Elk Scheme Extensions for Multimedia Programming

J. P. Lewis

NEC C&C Research
Princeton, NJ 08540 USA
zilla@ccrl.nj.nec.com

Abstract

Multimedia programming has diverse requirements, includ-
ing interactivity, complexity management and rapid devel-
opment facilities, high numerical performance, and compat-
ibility with C. While Lisp and Scheme address most of these
requirements, the design decisions in many Lisp and Scheme
implementations make them unsuitable for the development
of high performance mixed-language applications. This pa-
per describes several extensions to the Elk implementation of
Scheme which make it a suitable base for rapid prototyping
of multimedia applications under Unix. The extensions in-
clude a foreign function interface, C-compatible data types,
and vector and parallel computation facilities. The resulting
system has been used in both high-performance numerical
computation and in the construction of Unix utilities. The
extensions have been released to the original author of Elk
and will be included in Elk version 2.0.

KEYWORDS: Multimedia, Scheme, vector programming,
Linda.

Introduction

The goal of this work was to obtain a development environ-
ment suitable for multimedia work. Multimedia applications
involve several distinct styles of computation. In the user in-
terface,

e object oriented techniques, interactive development,
and other approaches to managing the complexity of
the user interface are needed

e multi-threaded control is desirable—the interface
should not ‘die’ when an operation is started

e efficiency is not critical; languages such as Lisp and
Smalltalk have adequate performance.

In contrast, the ‘back end’ computation of multimedia data
types is similar in character to scientific computation:

e Supercomputer-class performance is required for real-
time operation. The bandwidth of digital video, for
example, is roughly 15 megabytes/second, so real time
operation entails 15 MIPS per algorithm instruction. A
simple signal processing algorithm would require hun-
dreds or thousands of MIPS to operate in real time on
video data.

e The algorithms are very data parallel and are well
suited to vectorization and parallelization.

Lastly, in the graphics portion of a multimedia application
we may require mixed language programming in order to
make use of existing GUI libraries such as X-windows or the
Silicon Graphics GL library. These libraries generally have
C language interfaces.

Languages such as Lisp, Scheme, and Smalltalk can in theory
support the multiple programming styles required in multi-
media computation due to their extensibility. Scheme in par-
ticular is a simple but highly configurable language. While
Scheme is neither object oriented nor multi-threaded, it is
possible to build sophisticated multiple inheritance object
systems with little effort and no change to the language [3];
coroutines are also easy to implement.

World Views: Lisp versus Unix

Lisp, Scheme, and Smalltalk may have practical drawbacks
when used with Unix-like operating systems, ' however.
Most implementations adopt what could be called the ‘Lisp
Machine’ world view; the implementation is intended to pro-
vide a complete environment and as such effectively replaces
the underlying operating system from the user’s point of
view. While the Lisp Machine world view has advantages, a
practical drawback is that it does not make effective use of
existing Unix software (and hardware). Complete lisp envi-
ronments may require many megabytes of memory and may
take many seconds to start; such implementations are not
appropriate for writing a Unix filter program, for example.

The design decisions of such Lisp Machine-like implementa-
tions favor efficient execution of Lisp code; the foreign func-
tion interface is generally added as an afterthought. This
means that calling foreign code is often relatively inefficient
and inconvenient. For example, it is often necessary for the
foreign code to convert data from the internal Lisp format
to the C storage format. Existing foreign library routines
may not be directly callable for this reason.

Elk Scheme

Elk (Extension Language Kit) is a mostly Revision 3 com-
patible Scheme interpreter for Unix written by Oliver Lau-
mann. It is designed to serve as a user and run-time exten-
sion language, that is, to be bound into large C (or other)
language programs in the same way that Emacs has a Lisp

n this paper Unix does not refer to UNIX, which is a propri-
etary trademark. Rather, Unix is intended to refer to a Unix-like
operating system having a command shell user interface.

extension language. Elk has several features which support
its use as an extension language:

e Dynamic loading of C object files. Extensions to Elk
can be written in C (or a C-calling convention com-
patible language) and can be dynamically loaded into
the running interpreter. Without our foreign function
interface (see below), such extensions must understand
the Elk calling convention.

e Definition of new types from C. Elk extensions can de-
fine new Elk types by providing a few routines to create,
destroy, print, copy, etc. objects of the new type.

The Elk distribution includes glue (calling convention con-
version) code for many X windows and Motif routines,
and it includes some sample Motif widgets written in
scheme. Elk is free and is available by anonymous ftp from
nexus.yorku.ca.

Numerical Computation in Lisp and Scheme

Some existing Lisp and Scheme compilers generate code
which is competitive with that generated by C compilers
for certain classes of programs (e.g. [2]). Unfortunately,
few Lisp or Scheme compilers handle numerical (and in par-
ticular floating point) computation well. Our Elk Scheme
extensions include three alternate approaches to obtaining
high-performance numerical computation in a Lisp language:

1. A C foreign function interface. Using the rule of thumb
that most compute time is spent in a few inner loops,
we expect that we can obtain nearly the performance
of a pure C program while writing only a few routines
in C.

2. Vector primitives, or “APL in Scheme”. The relative
inefficiency of Lisp or Scheme can be diluted by over-
loading the computation on large vectors.

3. Support for parallel computation.

Foreign Function Interface

The Elk foreign function interface extension (hereafter re-
ferred to as FFI) obtains Scheme data, puts it in registers
or on the stack according to the C calling convention, calls
a foreign function, retrieves any returned results, and pack-
ages these results as Scheme data. Because the FFI must
access machine registers including the stack and floating
point registers, and because C (despite its reputation as a
‘systems programming’ language) cannot access such regis-
ters directly, the FFI must in general be written in assem-
bly language. The FFI currently exists for the Sparc and
MIPS/SGI architectures.

The FFT allows the following C types to be passed from/to
Scheme: float, double, char, short, int, char *, FILE *.
The types char,short are always passed as a four-byte int
due to C type elevation rules on 32-bit architectures. Func-
tions which return char * result in the creation of a Scheme
string (allocated on the Scheme heap). This works correctly
for C functions such as getenv which return a pointer to a

statically allocated string. Routines which return a pointer
to a string allocated with malloc will leak memory if called
with our FFI; such routines need to be called via a glue
function which frees the string. Scheme Ports are passed as
C FILE streams. Scheme Booleans are passed to C as the
integers zero or one.

Foreign functions are defined by the call

Define_Foreign(char *name,
void (*fun) (), char *args)

where name is the name of the new function in Scheme, fun is
the address of the C function, and args is a string specifying
the argument types of the C function. Characters in the args
string specify argument types as follows:

Scheme boolean <-> C int O or 1
integer

double

float

string (char *)

port (FILE *)

foreign array (see below)

= 'y wnkrTTH®D

The character R precedes the data type of the return value
(if any). Examples:

Define_Foreign("strlen",strlen,"SRI");
Define_Foreign("getenv",getenv,"SRS");
Define_Foreign("pow",pow, "FFRF");

The argument specification "SRI" for the function strlen
can be read as “String, Returns Integer”.

C structure datatypes can be used in Scheme programs in
one of two ways: one can define C routines to create, initial-
ize, print, free, and otherwise operate on the datum. These
routines are declared via the FFI. The ‘create’ routine re-
turns a pointer to the allocated object and passes this ad-
dress to Scheme as an integer. Alternatively, the create rou-
tine can be written in Scheme and can allocate space in a
foreign array (see below). In this approach Scheme routines
can be written to access the fields of the structure.

The FFI allows a hybrid Scheme/C programming style in
which program subroutines are written in either Scheme or
C as appropriate. The choice of Scheme versus C coding is of
course a program design decisions which must be considered
carefully. More generally, the FFI itself reflects a design
compromise. We feel that the current design is justified by
its simplicity and by the fact that it does not require the
use of unusual coding styles or reference to Scheme internal
data structures in the foreign code. A more extensive FFI
design is described in [4].

Foreign Arrays

Foreign arrays (farrays) are essentially a mechanism for al-
locating storage from the Scheme heap for use by foreign
routines. Foreign arrays appear to Scheme as a normal
datatype, i.e., they are assigned, printed, and (if unrefer-
enced) garbage collected like other variables.

Foreign arrays are conventionally interpreted as homoge-
neous arrays of one of the C datatypes char, int, float.
Objects of other type are mapped onto char (byte) foreign
arrays. Arrays of double are not currently implemented.
Foreign arrays are distinguished from Scheme (or Lisp) vec-
tors or arrays in that the latter are inhomogeneous arrays of
pointers to arbitrary data and thus cannot be passed to C
without conversion.

A hypothetical example of the use of a foreign array is a
three-dimensional graphics program. This program reads
the geometry of a model from a file into a foreign array
using a foreign call to read or fread, transforms the ge-
ometry using vector calls (described below), and writes the
transformed data to a display library. Overall control is in
Scheme, but all of the computation except the calls is in C,
and no data conversion between Scheme and C is required.

Foreign arrays are created as the value of the call
(farray <type> <length>)

where type is one of ’integer, ’real, ’string (string sig-
nifies a byte array) and length is the number of elements in
the array.

The following Scheme functions manipulate foreign arrays:

(farray? <farray>)

(farray-type <farray>)

(farray-length <farray>)

(farray-copy <farray>)

(farray-of <values>)

(farray-ref <farray> <index>)
(farray-set! <farray> <index> <value>)

In order to avoid adding new syntax to Scheme, farrays are
printed as

(% <values >)

and the function % (also known as farray-of) returns its
arguments as an farray.

Elk Scheme as a Unix Shell Language

The FFI made it convenient to bind many Unix library func-
tions in Elk. With the addition of a few custom glue routines
Elk now serves as a sophisticated shell language.

The motivation for Scheme as a shell programming language
can be contrasted with the tool building philosophy under-
lying Unix. In the Unix philosophy tools are effectively do-
main specific “little languages”. csh, make, awk, find are
examples of tools having relatively complex (and ad hoc)
input languages.

While the “little language” approach provides concise com-
mands for accomplishing intended tasks, it also has a number
of disadvantages:

e ‘Cognitive overhead’-it requires that the skilled user
be familiar with many inconsistent special purpose lan-
guages.

e Little languages do not have the support of ‘bigger’ lan-
guages. Such support includes debuggers, alternate im-
plementations, extension languages, and professionally
written manuals.

e Poor design—many little languages are collections of
incrementally added features; the resulting language
is poorly designed. Typical symptoms include single-
character variable names, bizarre escape sequences, and
numerous reserved special characters.

e Poor synergy-it is common to find that one tool has
information which is needed, but it is in a form which
cannot be used by a different tool. In fact much of the
effort in writing Unix shells (and utility programs) is
involved simply in parsing and reformatting data rep-
resentations.

e Limited reusability— program components such as argu-
ment and input parsing, symbol tables and expression
evaluation are rewritten from scratch many times.

An alternate approach, which might be termed the eztensible
language philosophy, adopts a complete and extensible lan-
guage. This approach allows one to build reusable libraries
and modules, and to extend existing tools without starting
from scratch. Most importantly, this approach lets us reuse
our own knowledge rather than requiring the learning of a
different syntax for each tool. These preceding assertions
will now be illustrated with several examples.

The function traverse walks through a Unix directory tree,
calling the supplied function dofile with the name of each
file in the tree:

(define (traverse path dofile)
(if (equal? ’regular (file-status path))
(dofile path)
; else
(if (file-exists? path)
(traverse-dir path dofile))
);if
) ;traverse

(define (traverse-dir path dofile)
(let ((dir (os-read-directory path))
(back (os-getwd)))
(os-chdir path)
(dolist (entry dir)
(if (not (member entry ’("." "..")))
(traverse entry dofile)))
(os-chdir back)
);let
) ;traverse-dir

Traverse can be saved in a separate file and loaded by any
shell which requires this function. Thus, a shell to removes
all core files from one’s home directory is:

#! /usr/local/bin/elk

(traverse (os-getenv "HOME")
(lambda (f)
(when (equal? f "core")
(os-delete-file f)
)
))

Of course the Unix program find is designed to do this sort
of thing. Find has its own syntax, however, and thus it
lacks the “cognitive economy” of our function. One should
also consider the probable effort required to develop find
versus that required to write the traverse function— the latter
is probably under an hour of effort despite having similar
utility. Since the source for traverse is available and is
simple, it can be easily modified to accomplish new tasks.

With a few suitable library functions such as traverse,
Elk shell programs can subsume the roles of many special
purpose Unix tools. Elk shell programs also serve well in
the role of a general purpose shell language. While this is
difficult to demonstrate in limited space, we may compare
the Elk and Perl versions of a subroutine to add two vectors:

sub arrayadd {
local(*a, *b)
local($max) =
local(@sum);
for (local($i) = 0; $i <= $max; $i++) {
$sum[$i] = ali] + $b[$il;

= e_;
$#a > $#b 7 $#a : $#b;

}
Q@sum;
}
@foo = (1,2,3);
@bar = (10,20,30);
Q@totals = &arrayadd(*foo, *bar);

The corresponding Scheme is:

(define (arrayadd a b)
(map + a b))

(define foo (1 2 3))
(define bar ’(10 20 30))
(define totals (arrayadd foo bar))

The Perl code has the typical “little language” symptom
of excessive syntax. This example requires the characters
*,$,#,0,& as well as parentheses, brackets and curly braces.

Elk Vector Facility

Many scientific and multimedia algorithms have significant
or overwhelming ‘data parallelism’, meaning that the same
operation is applied across many pixels, sound samples, or
other data. In contrast to the identification of parallelism
in a compiler or in a typical Al program, data parallelism is
very easy to identify.

Such parallelism can be ‘exploited’ in a language where prim-
itive functions operate directly on the aggregate data, rather
than on one datum at a time. Such primitive functions can
be mapped directly onto vector or certain parallel hardware
[5].

Scheme has several advantages over C for data parallel pro-
gramming. Algorithms expressed as C programs cannot eas-
ily make use of such parallelism, since C programs are in
a sense already ‘compiled’ by the programmer for the se-
rial machine described by C (i.e., a PDP-11). Scheme is

extensible: any function can be redefined with vector over-
loading. Scheme also has “first class syntax”: user-defined
extensions to the language are indistinguishable in form and
convenience from intrinsic features.

A subset of APL-like vector operations has been added
to Elk Scheme. These include scans, reductions,
gather/scatter /subscripting, reshaping, and various math-
ematical functions. Since the functions are written in C, the
performance overhead of Scheme is diluted by the size of the
vectors. In several simple benchmarks, vectorized Scheme
code was found to be 1/5...1/3 of the speed of the same
benchmark written in custom C code. We note that this is
in the same performance range as current Lisp compilers,
despite the fact that Elk is an interpreter.

Vector Expression Compiler

Rather than overloading functions with vectors (as in APL),
we took the approach of adding a new form parlet (data
parallel let) which compiles serial code in its body onto the
vector operations. One motivation for this approach is that
the parlet form serves to identify vectorized code in the pro-
gram. A second motivation is that the APL approach is dif-
ficult to compile because the scalar/vector (scalar meaning
non-vector) nature of a variable is determined at run-time.
While Elk is interpreted, we wanted to write code which
could also be compiled using an appropriate redefinition of
parlet. The parlet form declares all vector variables and
all unknown vector functions. The parlet form resembles
the elwise form used in Paralation Lisp [5]; both forms are
unusual for Lisp-like languages in that they make a type
distinction explicit.

The syntax of parlet is
(parlet <declarations> <body>)
As a simple example,

(parlet (v)
(=v 1))

declares v to be a vector and returns the result of comparing
1 to each element of this vector. Parlet determines the
vector/scalarness of each expression and elevates all scalar
components of a mixed expression to vector form. Scalar
functions are replaced by the corresponding vector operators
if appropriate. Thus, the previous example expands to

(v-eq v (v-distribute 1 v))

All vector operators are functional, though set! can be used
to assign vectors to variables inside a parlet. The scalar —
vector expansion happens at the time the function is defined,
not at run time. Writing scalar code in the body of the
parlet enhances the readability of the code, particularly for
those who are not familiar with APL and similar languages.

Support for Parallel Computation

POSYBL, a public domain implementation of the Linda par-
allel programming paradigm [1], has been included in Elk.

Our current Scheme binding consists of three primitives
linda-in,linda-rd,linda-out. All tuple keys and data
are Scheme strings. Linda-in and linda-rd accept a key
string and retrieve the corresponding data; linda-out is
passed a key string and the corresponding data. A fourth
call linda-run runs a Unix process on a remote host; that
process is typically a worker which will access the shared
tuple space.

It is possible to build a coarse-grain version of the Linda
eval on top of these calls. The eval call should print the
expression to be evaluated to a string, add a unique identifier
to this string, and put the identified string into the tuple
space, i.e,

(linda-out "eval"
(to-string (list (make-id) expr)))

An “eval server” process calls 1inda-in with the same key
("eval”), reads and evaluates the expression, and prints the
result back into the tuple space using "linda-out" with an-
other agreed-upon key and the identifier:

(let* ((r (from-string (linda-in "eval")))
(id (car r)) (expr (cdr r)))
(linda-out "result"
(to-string (list id (eval expr))))

Using such a linda-eval mechanism and the Scheme
force/delay construct, we were able to implement a
pseudofuture form resembling the future construct in sev-
eral parallel Lisp and Scheme dialects. Unlike the future
construct, however, we must explicitly force our results.

It should be emphasized that the facilities described in this
section are suitable only for very coarse grain computation.
The basic Linda facilities have been used in a short three-
dimensional animation involving the computation of a three-
dimensional correlated random process. The computation
was distributed across 15 workstations using the processor
farm paradigm, with a single frame of the animation as the
unit of granularity. Each frame required several minutes of
computation, and the total computation animation required
on the order of a few hours rather than a day or so thanks
to the parallel computation.

References

[1] N. Carriero and D. Gelernter. How to write parallel pro-
grams: A guide to the perplexed. ACM Computing Sur-
veys, 21:323-357, September 1989.

[2] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and
N. Adams. Orbit: An optimizing compiler for scheme. In
Proc. SIGPLAN Symposium on Compiler Construction,
pages 255-263, 1986.

[3] Kurt Normark. Simulation of Object-Oriented Concepts
and Mechanisms in Scheme. Aalborg University Insti-
tute for Electronic Systems, Aalborg, Denmark, 1990.

[4] John Rose and Hans Muller. Integrating the scheme and
¢ languages. In Proc. ACM Lisp and Functional Pro-
gramming, 1992.

[6] Gary Sabot. The Paralation Model: Architecture-
Independent Parallel Programming. MIT Press, Cam-
bridge, Mass., 1988.

