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Scattered vs. Regular domain
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Motivation

• modeling

• animated character deformation

• texture synthesis

• stock market prediction

• neural networks

• machine learning...
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Machine Learning

• Score credit card applicants

• Each person has N attributes: income, age,
gender, credit rating, zip code, ...

• i.e. each person is a point in an
N -dimensional space

• training data: some individuals have a score
“1” = grant card, others “-1” = deny card
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Machine Learning

• From training data, learn a function

RN → −1, 1

• .... by interpolating the training data
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Texture Synthesis

(blackboard drawing)
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Stock Market Prediction

(blackboard drawing)
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Modeling

Deforming a face mesh

Images: Jun-Yong Noh and Ulrich Neumann, CGIT lab
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Shepard Interpolation

d̂(x) =

∑

wk(x)dk
∑

wk(x)

weights set to an inverse power of the distance:
wk(x) = ‖x− xk‖

−p.

Note: singular at the data points xk.
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Shepard Interpolation

improved “higher order” versions in Lancaster
Curve and Surface Fitting book
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Natural Neighbor Interpolation

Image: N. Sukmar, Natural Neighbor Interpolation and the Natural Element Method

(NEM)
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Wiener interpolation

linear estimator x̂t =
∑

wkxt+k

orthogonality E[(xt − x̂t)xm] = 0

E[xtxm] = E[
∑

wkxt+k xm]

autocovariance E[xtxm] = R(t−m)

linear system R(t−m) =
∑

wkR(t + k −m)

Note no requirement on the actual spacing of the data.

Related to the “Kriging” method in geology.
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Applications: Wiener interpolation

Lewis, Generalized Stochastic Subdivision, ACM TOG July

1987
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Laplace/Poisson Interpolation

Objective: Minimize a roughness measure, the
integrated derivative (or gradient) squared:

∫

df

dx

2

dx

∫ ∫

|∇f |2ds

Scattered Interpolation Survey – p.14/53



Laplace/Poisson interpolation

minimize
R

(f ′(x))2dx should come out like d2f

dx2
= ∇2 = 0

F (y, y′, x) = y′2

δF = ∂F
dy′

dy′

dε
δε

= ∂F
dy′

q′δε ∂F
dy′

= 2y′ = 2 df
dx

dE
dε

=
R

∂F
dy′ q

′dx now change q’ to q
R

∂F
dy′ q

′dx = ∂F
dy′ q −

R

d
dx

∂F
dy′ qdx integration by parts

∂F
dy′ q

˛

˛

˛

b

a
= 0 because q is zero at both ends

dE
dε

= −
R

d
dx

∂F
dy′ qdx = 0 variation of functional is zero at minimum

= −2 d
dx

df
dx

= −2 d2f

dx2
= −2∇2f = 0
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Laplace/Poisson: Discrete

Local viewpoint:

roughness R =

∫

|∇u|2du ≈
∑

(uk+1 − uk)
2

for a particular k:
dR

duk

=
d

duk

[(uk − uk−1)
2 + (uk+1 − uk)

2]

= 2(uk − uk−1)− 2(uk+1 − uk) = 0

uk+1 − 2uk + uk−1 = 0→ ∇2u = 0

Notice: DT D = . . . 1,−2, 1
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Laplace/Poisson Interpolation

Discrete/matrix viewpoint: Encode derivative
operator in a matrix D

D =











1

−1 1

−1 1

. . .











min
f

fTDTDf
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Laplace/Poisson Interpolation

min
f

fTDTDf

2DTDf = 0

i.e.
d2f

dx2
= 0 or ∇2 = 0

f = 0 is a solution; last eigenvalue is zero,
corresponds to a constant solution.
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Laplace/Poisson: solution approaches

• direct matrix inverse (better: Choleski)

• Jacobi (because matrix is quite sparse)

• Jacobi variants (SOR)

• Multigrid
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Jacobi iteration

matrix viewpoint

Ax = b

(D + E)x = b split into diagonal D, non-diagonal E

Dx = −Ex + b

x = −D−1Ex + D−1b call B = D−1E, z = D−1b

x← Bx + z D−1 is easy

hope that largest eigenvalue of B is less than 1
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Jacobi iteration

Local viewpoint
Jacobi iteration sets each fk to the solution of its row of the

matrix equation, independent of all other rows:

∑

Arcfc = br

→ Arkfk = bk −
∑

j 6=k

Arjfj

fk ←
bk

Akk

−
∑

j 6=k

Akj/Akkfj
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Jacobi iteration

apply to Laplace eqn
Jacobi iteration sets each fk to the solution of its row of the

matrix equation, independent of all other rows:

. . . ft−1 − 2ft + ft+1 = 0

2ft = ft−1 + ft+1

fk ← 0.5 ∗ (f [k − 1] + f [k + 1])

In 2D,

f[y][x] = 0.25 * ( f[y+1][x] + f[y-1][x] +

f[y][x-1] + f[y][x+1] )
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But now let’s interpolate

1D case, say f3 is known. Three eqns involve f3.
Subtract (a multiple of) f3 from both sides of
these equations:

f1 − 2f2 + f3 = 0 → f1 − 2f2 + 0 = −f3

f2 − 2f3 + f4 = 0 → f2 + 0 + f4 = 2f3

f3 − 2f4 + f5 = 0 → 0− 2f4 + f5 = −f3

L =

2

6

6

6

6

6

4

1 −2 0

1 0 1

0 −2

. . .

3

7

7

7

7

7

5

one column is zeroed
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Multigrid

Ax = b

x̃ = x + e

r is known, e is not r = Ax̃− b

r = Ax + Ae− b

r = Ae

For Laplace/Poisson, r is smooth. So decimate, solve for e,

interpolate. And recurse...
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Exciting demo
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Recovered fur
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Recovered fur: detail
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Poor interpolation
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Membrane vs. Thin Plate

Left - membrane interpolation, right - thin plate.
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Thin plate spline

Minimize the integrated second derivative
squared (approximate curvature)

min
f

∫
(

d2f

dx2

)2

dx
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Radial Basis Functions

d̂(x) =
N

∑

k

wkφ(‖x− xk‖)
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Radial Basis Functions (RBFs)

• any function other than constant can be used!

• common choices:

• Gaussian φ(r) = exp(−r2/σ2)

• Thin plate spline φ(r) = r2 log r
• Hardy multiquadratic

φ(r) =
√

(r2 + c2), c > 0

Notice: the last two increase as a function of radius
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RBF versus Shepard’s
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Solving Thin plate interpolation

• if few known points: use RBF

• if many points use multigrid instead

• but Carr/Beatson et. al. (SIGGRAPH 01) use
Greengart FMM for RBF with large numbers
of points
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Radial Basis Functions

d̂(x) =
N

X

k

wkφ(‖x − xk‖)

e =
X

j

(d(xj) − d̂(xj))
2

=
X

j

(d(xj) −

N
X

k

wkφ(‖xj − xk‖))
2

= (d(x1) −
N

X

k

wkφ(‖x1 − xk‖))
2 + (d(x2) −

N
X

k

wkφ(‖x2 − xk‖))
2 + · · ·
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Radial Basis Functions

define Rjk = φ(‖xj − xk‖)

= (d(x1) − (w1R11 + w2R12 + w3R13 + · · ·))2

+(d(x2) − (w1R21 + w2R22 + w3R23 + · · ·))2 + · · ·

+(d(xm) − (w1Rm1 + w2Rm2 + w3Rm3 + · · ·))2 + · · ·

d

dwm

= 2(d(x1) − (w1R11 + w2R12 + w3R13 + · · ·))R1m

+2(d(x2) − (w1R21 + w2R22 + w3R23 + · · ·))R2m

+ · · ·

+2(d(xm) − (w1Rm1 + w2Rm2 + w3Rm3 + · · ·)) + · · · = 0

put Rk1, Rk2, Rk3, · · · in row m of matrix.
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Radial Basis Functions

d̂(x) =
N

∑

k

wkφ(‖x− xk‖)

e = ||(d−Φw)||2

e = (d−Φw)T (d−Φw)

de

dw
= 0 = −Φ

T (d−Φw)

Φ
T
d = Φ

T
Φw

w = (ΦT
Φ)−1

Φ
T
d

Scattered Interpolation Survey – p.37/53



Where does TPS kernel come from

Fit an unknown function f to the data yk, regularized by

minimizing a smoothness term.

E[f ] =
∑

(fk − yk)
2 + λ

∫

||Pf ||2

e.g. ||Pf ||2 =

∫
(

d2f

dx2

)2

dx

Variational derivative of E wrt f leads to a differential

equation

P ′Pf(x) =
1

λ

∑

(f(x)− yk)δ(x− xk)
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Where does TPS kernel come from

Solve linear differential equation by finding
Green’s function of the differential operator,
convolving it with the RHS (works only for a
linear operator). Schematically,

Lf = rhs L is the operator P’P,

rhs is the data fidelity

f = g ? rhs f obtained by convolving g ? rhs

Lg = δ choosing rhs = δ gives this eqn

g is the “convolutional inverse” of L.
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Where does TPS kernel come from

In summary, the kernel g is the inverse Fourier
transform of the reciprocal of the Fourier
transform of the “adjoint-squared” smoothing
operator P .
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Where does TPS kernel come from

Fit an unknown function f to the data yk, regularized by

minimizing a smoothness term.

E[f ] =
∑

(fk − yk)
2 + λ

∫

||Pf ||2

e.g. ||Pf ||2 =

∫
(

d2f

dx2

)2

dx

A similar discrete version.

E[f ] = (f − y)′S′S(f − y) + λf ′P ′Pf
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Where does TPS kernel come from

(continued) A similar discrete version.

E[f ] = (f − y)′S′S(f − y) + λf ′P ′Pf

• To simplify things, here the data points to interpolate are required to be at discrete

sample locations in the vector y, so the length of this vector defines a “sample rate”

(reasonable).

• S is a “selection matrix” with 1s and 0s on the diagonal (zeros elsewhere). It has

1s corresponding to the locations of data in y. y can be zero (or any other value)

where there is no data.

• P is a diagonal-constant matrix that encodes the discrete form of the regularization

operator. E.g. to minimize the integrated curvature, rows of P will contain:
2

6

6

4

−2, 1, 0, 0, . . .

1,−2, 1, 0, . . .

0, 1,−2, 1, . . .

3

7

7

5

Scattered Interpolation Survey – p.42/53



Where does TPS kernel come from

Take the derivative of E with respect to the vector
f ,

2S(f − y) + λ2P ′Pf = 0

P ′Pf = −
1

λ
S(f − y)

Multiply by G, being the inverse of P ′P :

f = GP ′Pf = −
1

λ
GS(f − y)

So the RBF kernel “comes from” G = (P ′P )−1.
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Where does TPS kernel come from: Discr

(Discrete version) RBF kernel is G = (P ′P )−1.

Take SVD

P = UDV ′ ⇒ P ′P = V D2V ′

The inverse of V D2V ′ is V D−2V ′.

• eigenvectors of a circulant matrix are sinusoids,

• and P is diagonal-constant (toeplitz?), or nearly circulant.

• So V D−2V ′ is approximately the same as taking the Fourier transform and then

the reciprocal (remembering that D are the singular values of P not P ′P )
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Matrix regularization

Find w to minimize (Rw− b)T (Rw− b). If the training points

are very close together, the corresponding columns of R

are nearly parallel. Difficult to control if points are chosen

by a user.

Add a term to keep the weights small: wT w.

minimize (Rw − b)T (Rw − b) + λwT w

RT (Rw − b) + 2λw = 0

RT Rw + 2λw = RT b

(RT R + 2λI)w = RT b

w = (RTR + 2λI)−1RT b
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Applications: Pose Space Deformation

Lewis/Cordner/Fong, SIGGRAPH 2000

incorporated in Softimage

Scattered Interpolation Survey – p.46/53



Applications: Pose Space Deformation
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Pose Space Deformation
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Applications: Matrix virtual city
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Smart Point Placement for Thin Plate
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Smart Point Placement for Thin Plate
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Smart Point Placement for Thin Plate
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Smart Point Placement for Thin Plate
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