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Abstract

The quantitative evaluation of optical flow algorithms by
Barron et al. led to significant advances in the performance
of optical flow methods. The challenges for optical flow
today go beyond the datasets and evaluation methods pro-
posed in that paper and center on problems associated with
nonrigid motion, real sensor noise, complex natural scenes,
and motion discontinuities. Our goal is to establish a new
set of benchmarks and evaluation methods for the next gen-
eration of optical flow algorithms. To that end, we con-
tribute four types of data to test different aspects of optical
flow algorithms: sequences with nonrigid motion where the
ground-truth flow is determined by tracking hidden fluores-
cent texture; realistic synthetic sequences, high frame-rate
video used to study interpolation error; and modified stereo
sequences of static scenes. In addition to the average angu-
lar error used in Barron et al., we compute the absolute flow
endpoint error, measures for frame interpolation error, im-
proved statistics, and flow accuracy at motion boundaries
and in textureless regions. We evaluate the performance of
several well-known methods on this data to establish the
current state of the art. Our database is freely available on
the web together with scripts for scoring and publication of
the results at http://vision.middlebury.edu/flow/.

1. Introduction

As a subfield of computer vision matures, datasets for
quantitatively evaluating algorithms are essential to ensure
continued progress. Many areas of computer vision, such
as stereo [19], face recognition [17], and object recognition
[8], have challenging datasets to track the progress made by
leading algorithms and to stimulate new ideas.

Optical flow was actually one of the first areas to have
such benchmark datasets for quantitative comparison [2].
The field benefited greatly from this study, which led to
rapid and measurable progress. When the Barron ef al. [2]
evaluation first appeared, the state of the art was quite poor
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Figure 1. Dimetrodon: An example of one of the four types of
data. The dense ground-truth flow for this nonrigid scene was ob-
tained using hidden fluorescent texture. See Section 3.1.

and most algorithms had difficulty with even the simplest
sequences. Today the story is quite different. Numerous
flow algorithms are in regular use and performance on the
classic ground-truth datasets such as the Yosemite sequence
have largely saturated. State-of-the-art algorithms obtain
average angular errors (AAE) of less than 2.0° (equivalent
to around 0.1 pixels) with essentially no outliers.

To continue the rapid progress, new and more challeng-
ing datasets are needed to push the limits of current technol-
ogy, reveal where current algorithms fail, and evaluate the
next generation of optical flow algorithms. Such an evalua-
tion dataset for optical flow should ideally consist of com-
plex real (or photo-realistic) scenes with all the artifacts of
real sensors (noise, motion blur, efc.). They should also
contain substantial motion discontinuities as well as non-
rigid motion. Of course, the image data must be paired with
dense, subpixel accurate, ground-truth flow fields.

The presence of nonrigid or independent motion makes
collecting a ground-truth dataset for optical flow far harder
than for stereo, say, where structured-light [19] or range-
scanning [21] can be used to obtain ground truth. Our solu-
tion is to collect four different datasets, each of which satis-



fies a different subset of the desirable properties above. The
combination of these datasets provides a basis for a rigor-
ous evaluation of current optical flow algorithms. More-
over, the relative performance of algorithms on the different
datatypes should stimulate further research in the field. In
particular, we collected the following data:

1. Real imagery of nonrigidly moving scenes, where
dense ground-truth flow is obtained using hidden fluo-
rescent texture painted on the scene. We slowly move
the scene, at each point capturing separate test im-
ages (in visible light) and ground-truth images (in UV
light). See Figure 1. Note that a related technique is
being used commercially for motion capture [15].

2. Realistic synthetic imagery. We address the limitations
of sequences such as Yosemite [2] by rendering more
complex scenes with significant motion discontinuities
and textureless regions.

3. Imagery for frame interpolation where intermediate
frames are withheld and used as ground truth. In a
wide class of applications such as novel-view gener-
ation and motion-compensated compression, what is
important is not how well the flow field matches the
ground-truth motion, but how well intermediate frames
can be predicted using the flow [26].

4. Real stereo imagery of rigid scenes, where dense
ground-truth is captured using the procedures in [19,
20]. The data is then modified for optical flow.

Our focus in this paper is on developing the database and
the evaluation methodology. We also evaluate a number of
well-known flow algorithms to characterize the current state
of the art. While the results do highlight many limitations
of current techniques and challenges for the field, the com-
parisons provided here are by no means exhaustive. We feel
that the best way to obtain such a full comparison is to make
the data freely available on the web. The evaluation web-
site http://vision.middlebury.edu/flow/ contains all the data,
along with scripts for scoring and publication of the results.
This online repository will be dynamic, with new data being
added as the need arises. This paper summarizes the data
available at an instant in time and is representative of the
type of data and evaluation measures available. We may,
however, add color images and multi-frame sequences in
the future. Researchers are encouraged to visit the website
for the latest data, collection procedures, and parameters of
the scoring measures.

2. Related Work

A full review of optical flow algorithms is beyond the
scope of this paper. Interested readers are referred to pre-
vious surveys by Aggarwal and Nandhakumar [1], Barron
et al. [2], Otte and Nagel [16], Mitiche and Bouthemy [14],

and Stiller and Konrad [23]. Instead we focus here on the
evaluation of optical flow algorithms.

We must first define what we mean by optical flow.
Following Horn’s [10] taxonomy, the motion field is the
2D projection of the 3D motion of surfaces in the world,
whereas the optical flow is the apparent motion of the
brightness patterns in the image. These two are not always
the same and, in practice, the goal of optical flow recovery is
application dependent. In frame interpolation (“‘slow—-mo”),
it may be preferable to estimate apparent motion so that, for
example, specular highlights move in a realistic way. In this
paper we present two kinds of ground truth; ground-truth
motion fields and intermediate images for the evaluation of
apparent motion. We assume that the true flow can be mod-
eled by a single flow vector at each point in the scene; that
is, we exclude transparency for now.

There have been three major previous attempts to quan-
titatively evaluate optical flow algorithms, each proposing
sequences with ground truth. The work of Barron ef al. [2]
has been so influential that essentially all published meth-
ods today compare with it. The synthetic sequences used
there are now too simple, however, to make meaningful
comparisons between modern algorithms. Otte and Nagel
[16] introduced ground truth for a real scene consisting of
polyhedral objects. While this provided real image data, the
images still were extremely simple. Most recently McCane
et al. [12] provided more ground truth for real polyhedral
scenes as well as graphics scenes of varying realism.

Here we go beyond these studies in several important
ways. First, we provide ground-truth motion for much more
complex real and synthetic scenes. Specifically we include
ground truth for scenes with nonrigid motion. Second, we
also provide ground-truth motion boundaries and extend the
evaluation methods to these areas where many flow algo-
rithms fail. Finally, we provide a web-based interface which
acilitates the ongoing comparison of methods.

Our goal is to push the limits of current methods and,
by exposing where and how they fail, focus attention on the
hard problems. In general, all flow algorithms have some
matching criterion, some method for combining measure-
ments spatially, and some optimization algorithm for com-
puting the flow field. Regardless of which matching cri-
teria and optimization algorithms are chosen, optical flow
algorithms must somehow deal with all of the phenomena
that make the problem intrinsically ambiguous and difficult.
These include the aperture problem, textureless regions,
motion discontinuities, occlusions, large motions, small ob-
jects, nonrigid motion, mixed pixels, changes in illumina-
tion, non-Lambertian reflectance, motion blur, and camera
noise. Our goal is to provide ground-truth data containing
all these components and to provide information about their
location in images. In this way, we can evaluate which phe-
nomena pose problems for which methods.



Figure 2. Our setup for obtaining ground-truth flow using hidden fluorescent texture, including computer-controlled lighting and motion
stages for camera and scene. The small images show visible light illumination (top row) and UV illumination (bottom row); the middle col-
umn shows the high-resolution images taken by the camera, and the right column shows a zoomed portion. The high-frequency fluorescent
texture in the UV images allows accurate tracking, but is largely invisible in the low-resolution test images.

3. Database Design

Creating a ground-truth database for optical flow is dif-
ficult. For stereo, structured light [19] or range scanning
[21] can be used to obtain dense, pixel-accurate ground
truth. For optical flow, the scene may be moving nonrigidly
making such techniques inapplicable in general. Ideally we
would like imagery collected in real-world scenarios with
real cameras, which furthermore contains substantial non-
rigid motion. We would also like dense, subpixel-accurate
ground truth. Unfortunately, we are not aware of a practical
technique that can be used to satisfy all of these goals.

Rather than collecting a single benchmark dataset (with
its inherent limitations) we instead collect four different
sets, each satisfying a different subset of desirable prop-
erties. We believe that the combination of these datasets
is sufficient to allow a rigorous evaluation of optical flow
algorithms. As we will see, the relative performance of
algorithms on the different types of data is itself interest-
ing and may provide insights into future algorithm develop-
ment. We now describe each of the four datasets in turn.

3.1. Dense GT Using Hidden Fluorescent Texture

We have developed a technique for capturing imagery of
nonrigid scenes with ground-truth optical flow. We build a
scene that can be moved in very small steps by a computer-
controlled motion stage. We apply a fine spatter pattern of
fluorescent paint to all surfaces in the scene. The computer
repeatedly takes a pair of high-resolution images both under
ambient lighting and under UV lighting, and then moves the
scene (and possibly the camera) by a small amount.

In our current setup, shown in Figure 2, we use a Canon
EOS 20D camera to take images of size 35042336, and
make sure that no scene point moves by more than 2 pixels
from one frame to the next. We obtain our test sequence by
downsampling every 20th image taken under visible light

by a factor of 8, yielding images of size 438x292, with
motions of up to 5 pixels between frames.

Since fluorescent paint is available in a variety of col-
ors, the color of the objects in the scene can be closely
matched. In addition, it is possible to apply a fine spatter
pattern, where individual droplets are about the size of 1-2
pixels in the high-resolution images. This high-frequency
texture then effectively disappears in the low-resolution im-
ages, while the fluorescent paint is very visible in the high-
resolution UV images (see Figure 2, rightmost column).

The ground-truth flow is computed by tracking small
windows in the sequence of high-resolution UV images. We
use a simple sum-of-squared-difference (SSD) tracker with
a window size of 15x 15, corresponding to a window diam-
eter of less than 2 pixels in the downsampled images. We
perform a brute-force search and use each frame to initial-
ize the next. We also crosscheck the results by tracking
each pixel both forwards and backwards through the se-
quence and require perfect correspondence. The chances
that this check would yield false positives after tracking for
20 frames are very low. Crosschecking identifies the oc-
cluded regions, whose motion we mark as “unknown”; it
also helps identify regions with insufficient texture, which
we can eliminate by applying more paint.

Using this combination of fluorescent paint, downsam-
pling high-resolution images, and sequential tracking of
small motions, we are able to capture dense ground truth
for a nonrigid scene. The main limitations are (1) it can
only be applied in a lab setting with controlled motion, and
(2) it does not capture effects such as motion blur.

We include two sequences in this paper. Dimetrodon
contains nonrigid motion and large areas with little texture.
One image and the color-coded ground-truth flow are in-
cluded in Figure 1. Seashell contains several objects under-
going independent motion and is illustrated in Figure 3.



Figure 3. Seashell: A second example of a sequence captured us-
ing hidden fluorescent texture. We display the first frame (left) and
the color-coded (see Figure 1) ground-truth flow (right).

3.2. Realistic Synthetic Imagery

Synthetic scenes generated using computer graphics are
often indistinguishable from real ones. For the study of op-
tical flow, synthetic data offers a number of benefits. In
particular, it provides full control over the rendering pro-
cess and allows us to explore different sources of “noise”
and their effects on flow algorithms. For example, we can
generate scenes with varying amounts of motion blur to as-
sess whether performance degrades with increasing blur. It
also allows control over the material properties of the ob-
jects and provides precise ground-truth motion and object
boundaries.

To go beyond previous synthetic ground truth (e.g., the
Yosemite sequence) we generated fairly complex synthetic
outdoor scenes with significant occlusion and a wide range
of camera motions (see Figure 4). The scenes contain a ran-
dom number of procedurally generated “rocks” (up to 40)
and “trees” (up to 25) with randomly chosen ground texture
and surface displacement. Additionally, the tree bark has
significant 3D texture. The scenes are rigid and the camera
motions include camera rotation and 3D translation.

These scenes were generated using the Mental Ray ren-
derer [7]. Each scene is generated with and without motion
blur. For the scenes with blur, the motion is sampled at the
virtual shutter open and close times and hence is assumed
linear during the open shutter interval. The virtual shutter
is open for the full interval between frames (corresponding
to a 360 degree shutter angle in film camera terminology).
The scenes are computed at a resolution of 640x480 using
linear gamma. Current rendered scenes do not include inter-
reflections. The ground truth was computed using a custom
renderer (“lens shader” plugin), which projects the 3D mo-
tion of the scene corresponding to a particular image onto
the 2D image plane.

3.3. Imagery for Frame Interpolation

In a wide class of applications such as novel view gener-
ation and motion-compensated compression, what is impor-
tant is not how well the flow field matches the ground-truth
motion, but how well intermediate frames can be predicted
using the flow. To allow for measures that predict perfor-
mance on such tasks, we collected a variety of data suitable
for frame interpolation. The relative performance of algo-
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Figure 4. We include two synthetically generated sequences in
this paper, Rock and Grove: These sequences contain substan-
tial motion discontinuities, motion blur, and larger motions than
Yosemite. See Figure 1 for the color coding of the flow.

rithms with respect to frame interpolation and ground-truth
motion estimation is interesting in its own right.

We used a PointGrey Dragonfly Express to capture a
number of sequences, acquiring frames at 100 frames per
second. We provide every 4th image to the optical flow al-
gorithms (i.e., 25 Hz) and retain the remaining intermediate
frames as ground-truth for evaluating frame interpolation.
This temporal subsampling means that the input to the flow
algorithms is captured at roughly the standard 25-30 Hz
while enabling generation of a 4 X slow-motion sequence.

We include two such sequences in this paper: Phone
and Crumple. In Figure 5 we show the first and second
frames for these two sequences. We emphasize that there is
no ground-truth motion for these sequences, only ground-
truth image data. In addition to this high-speed camera data,
we also use some of the other other sequences for frame
interpolation. We retain the middle frames for the hidden
texture sequences Dimetrodon and Seashell, and so also
compute the frame interpolation error for them. We also re-
tain the middle image of the Venus and Moebius sequences
described in the following section for the same purpose.

3.4. Modified Stereo Data for Rigid Scenes

Our final dataset consists of modified stereo data. Specif-
ically we use the Venus dataset obtained by registering
planes in the scene [19], and the Moebius dataset [18],
which was obtained using structured lighting [20]. These
datasets have an asymmetric disparity range [0, diax] that is
appropriate for stereo, but not for optical flow. We crop dif-
ferent subregions of the images, introducing a spatial shift,
to convert this disparity range to [—dmax/2, dmax/2] (see
Figure 6). One benefit of using this modified stereo data is
that it allows a comparison with state-of-the-art stereo al-
gorithms. Shifting the disparity range does not affect the
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Figure 5. The sequences Phone and Crumple are captured with a
PointGrey Dragonfly Express camera at 100Hz. We provide every
4th frame to the optical flow algorithms (equivalent to 25 Hz.) The
intermediate frames are retained as interpolation ground-truth.

performance of stereo algorithms so long as they are given
the new search range.

One concern with this data is that algorithms may take
advantage of the knowledge that the motions are all hori-
zontal. To counteract this, we may add additional vertical
motion to the datasets on our website, again introduced by
cropping different subregions.

4. Evaluation Methodology

We refine and extend the evaluation methodology of [2]
in terms of (1) the performance measures used, (2) the
statistics computed, (3) the sub-regions of the images con-
sidered, and (4) the use of the World Wide Web for data
distribution, results scoring, and results dissemination.

4.1. Performance Measures

The most commonly used measure of performance for
optical flow is the angular error (AE). The AE between two
flows (ug, vo) and (u1, v1) is the angle in 3D space between
(up,vo, 1.0) and (uy,v1,1.0). The AE is usually computed
by normalizing the vectors, taking the dot product, and then
and then taking the inverse cosine of their dot product. The
popularity of this measure is based on the seminal survey
by Barron et al. [2], although the measure itself dates to
prior work by Fleet and Jepson [9]. The goal of the AE
is to provide a relative measure of performance that avoids
the “divide by zero” problem for zero flows. Errors in large
flows are penalized less in AE than errors in small flows.

Although the AE is prevalent, it is unclear why errors
in a region of smooth non-zero motion should be penalized
less than errors in regions of zero motion. Hence, we also
compute an absolute error, the error in flow endpoint (EP)
defined by sqrt[(up — u1)? + (vo — v1)?] and used in [16].

For image interpolation, we use the (square root of the)
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Figure 6. We cropped the stereo datasets Venus [19] and Moebius
[20] to convert the asymmetric stereo disparity ranges into roughly
symmetric flow fields. One important reason for including this
dataset was to allow direct comparison with state of the art stereo
algorithms. See Figure 1 for the color coding of the flow.

SSD between the ground-truth image and the estimated in-
terpolated image. We also include a gradient-normalized
SSD inspired by [26]. The (square root of the) normalized
SSD between an interpolated image I(z,y) and a ground-
truth image Igr(x,y) is given by:

Z (I(z,y) — Ior(z,y))? (1)
& INIer@yP+e |

In our experiments e = 1.0 (grey-levels per pixel squared).

Naturally, an interpolation algorithm is required to gen-
erate the interpolated image from the optical flow field. In
this paper, we use the baseline algorithm briefly described
in Appendix A. Note that one area for future work is to de-
velop better frame interpolation algorithms. We hope that
our database can be used both by researchers working on
optical flow and on frame interpolation algorithms.

4.2. Statistics

Although the full histograms are available in a longer
technical report, Barron et al. [2] report averages (AV) and
standard deviations (SD) of the error measures. This has led
most subsequent researchers to only report these statistics.
We also compute the popular robustness statistics used in
the Middlebury stereo dataset [19]. In particular RX de-
notes the percentage of pixels that have an error measure
above X. For AEs we compute R1.0, R3.0, and R5.0 (de-
grees) in this paper. For EP errors we compute R0.1, R0.5,
and R1.0 (pixels). For the SSD interpolation error and the
normalized version of it, we compute R0.5, R1.0, and R2.0
(grey levels). We also compute robust accuracy measures
similar to those in [21]: AX denotes the accuracy of the



error measure at the zt" percentile. For all measures (AE,
EP, SSD, and normalized SSD) we compute A50, A75, and
A95. Note that in the final evaluation on the website the ex-
act points at which we sample these statistics may change.

4.3. Region Masks

It is easier to compute flow in some parts of an image
than in others. For example, computing flow around mo-
tion discontinuities is likely to be hard. Computing motion
in textureless regions is also likely to be hard, although in-
terpolating in those regions should be easier. Computing
statistics over such regions may highlight areas where exist-
ing algorithms are failing and spur further research in these
cases. We follow the procedure in [19] and compute the
error measure statistics over 3 types of region masks: all,
motion discontinuities, and textureless regions.

The all regions exclude 10 boundary pixels around the
edge of the image. Ideally we would like to include these
pixels, but several of the algorithms that we tested had
noticeable boundary effects. We did not remove semi-
occluded pixels in the motion ground-truth datasets because
we believe algorithms should be able to extrapolate into
these regions. For the interpolation ground truth, we did
exclude these regions because the baseline interpolation al-
gorithm does not reason about these areas. The motion dis-
continuities mask was computed by taking the gradient of
the ground-truth flow field, thresholding the magnitude, and
then dilating the resulting mask. If the ground-truth flow
is not available, we used frame differencing to get an es-
timate of fast moving regions instead. The textureless re-
gions were computed by taking the gradient of the image,
thresholding, and dilating.

4.4. Distribution, Evaluation, and Dissemination

An important part of our evaluation methodology is to
make the database freely available to researchers on the web
at http://vision.middlebury.edu/flow/. We also provide on-
line scoring scripts and the ability for researchers to publish
their scores.

5. Experimental Results

Our goal in this paper is to provide a set of baseline re-
sults to define the state of the art on the database and allow
researchers to get a sense of what is good performance on
the data. To this end, we compared 5 algorithms:

Pyramid LK: Animplementation [5] of the Lucas-Kanade
algorithm [11] on a pyramid, subsequently refined at
Microsoft Research. This implementation performs
significantly better than the Lucas-Kanade code in Bar-
ron et al. [2]. It is included to give an idea of how
the algorithms in [2] perform when implemented to to-
day’s standards.

Black and Anandan: We used the authors’ implementa-
tion of this algorithm [4] with the default parameters.

Bruhn ef al.: We implemented this highly regarded algo-
rithm [6] ourselves. We (roughly) reproduced the re-
sults obtained by that algorithm on the Yosemite se-
quence (included in the results webpage).

MediaPlayerTM: As a baseline for interpolation, we ob-
tained results using the real-time flow algorithm used
in Microsoft MediaPlayer 9 for video smoothing [13].

Zitnick et al.: We used the author’s implementation of this
algorithm [28] that uses consistent segmentation.

The results for all of these algorithms are available on the
evaluation website. We include results for all four measures
(AE, EP, SSD, and normalized SSD), all the statistics, and
for the three different masks. Mousing over any of the num-
bers pops up the estimated flow or interpolated image, and
the error from the ground truth. A screen shot of one of
these pages is included in Figure 7 (left). These preliminary
results suggest the following major conclusions:

Difficulty: The data is considerably more challenging than
Yosemite. For example, the AAEs for the Bruhn et
al. algorithm are Yosemite 1.69, Dimetrodon 10.99,
Seashell 11.09, Venus 8.73, Moebius 5.85, Rock
6.14, Grove 6.32. The disparity in performance
around the motion discontinuities is higher still.

Diversity: There is substantial variation in difficulty across
the datasets. For example, the average endpoint errors
for the Black and Anandan algorithm are Yosemite
0.15, Rock 0.22, Seashell 0.30, Dimetrodon 0.39,
Venus 0.55, Moebius 1.02, Grove 1.50. There is both
variability across datatypes (hidden fluorescent tex-
ture, synthetic, and modified stereo), and within those
types. This diversity is desirable because it means that
as technology matures, some subset of the data will be
at the appropriate level of difficulty.

Region Masks: A related point concerns the region masks.
For the stereo datasets (Venus and Moebius) the un-
textured regions are not significantly more difficult
than the textured regions. This is consistent with
results obtained by stereo algorithms [19]. On the
other hand, the results for the hidden fluorescent tex-
ture (Dimetrodon and Seashell) and the synthetic data
(Rock and Grove) show the textureless regions to be
significantly more difficult. It is possible that the im-
plicit assumptions of constant or smooth flow in non-
rigid scenes are less valid than the corresponding as-
sumptions of constant disparity for stereo.

Perhaps unsurprisingly, performance around motion
discontinuities is generally significantly worse than
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Figure 7. Left: A screen shot of one of the results webpages. This page shows the average angular error (AAE). The user can also select any
of the other measures in Section 4.1 or any of the other statistics in Section 4.2. We display separate columns for each of the region masks.
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the disparate results obtained using ground-truth motion error and interpolation error. MediaPlayer

T™ tends to overly extend the flow into

textureless regions such as above the paper. Because these regions are textureless, the interpolation error is not significantly affected.

over the entire image. The notable exception is
Dimetrodon, where the major difficulty is the complex
nonrigid flow in the textureless regions. This sequence
is appropriate for researchers investigating these prob-
lems in isolation from discontinuities.

Motion vs. Interpolation GT: As measured by average
rank, the best performing algorithms for the ground-
truth motion are Bruhn et al. and Black and Anandan.
For the interpolation task, the Pyramid LK algorithm
is the best. The results for MediaPlayer™ are also
significantly better for interpolation than for ground-
truth motion. An explanation for this is illustrated in
Figure 7 (right). MediaPlayer™ tends to overly ex-
tend the flow into textureless regions such as above the
paper. However, because these regions are textureless,
the interpolation error is not significantly affected. Be-
cause it does not need to be so careful in such regions,
the interpolation error can be improved elsewhere by
increased regularization. For a visual assessment of
the interpolation quality, please see the movies shown
on our webpage.

Comparison with Stereo: The robustness results R1.0 for
Venus allow a comparison with stereo. The best per-
forming stereo algorithms achieve an R1.0 score of
around 0.2-1.0, whereas the best performing optical
flow algorithm achieves 9.35 (Bruhn er al.). Note,
however, that the stereo algorithms use the epipo-
lar constraint, which gives them a significant advan-
tage. In addition, most stereo methods use color in-
formation, whereas all of the imagery in this paper is

greyscale (we will provide color imagery on the web-
site in the near future). Zitnick et al., which is sim-
ilar in spirit to many segmentation-based stereo algo-
rithms, performs relatively poorly overall. One reason
might be the lack of color information to drive the seg-
mentation. Another might be the focus in optical flow
on sub-pixel accuracy, compared to the focus in stereo
on robustness in labeling discrete disparities.

6. Conclusion

We have presented a collection of datasets for the eval-
uation of optical flow algorithms, available on the web
at http://vision.middlebury.edu/flow/. Preliminary results
show the data to be challenging and internally diverse,
which facilitates interesting comparisons and insights. Fu-
ture additions to our online database will include color im-
ages and multi-frame sequences. We have also extended
the set of evaluation measures and improved the evalua-
tion methodology. Amongst other things, this allows an
interesting comparison with stereo algorithms. As other
researchers use the datasets, it should lead to a far better
understanding of the relative performance of existing algo-
rithms and suggest interesting new directions for research.

One interesting future direction is better interpolation al-
gorithms. The baseline algorithm that we use could be sig-
nificantly improved if we had layering or depth information.
We encourage researchers to develop their own interpola-
tion algorithms and submit interpolated images for direct
comparison with the ground truth; for example, by looking
at more than pairs of frames to estimate motion [25, 24].



Acknowledgments

MIJB and SR were supported by NSF grants I1S-0535075
and IIS-0534858, and a gift from Intel Corporation. DS was
supported by NSF grant I1S-0413169. Ludwig von Reiche
of Mental Images generously donated a software license for
the Mental Ray renderer for use on this project. MJB and
JPL thank Lance Williams for early discussions on synthetic
flow databases. Finally, thanks to Sing Bing Kang, Simon
Winder, and Larry Zitnick for providing their implementa-
tions of Pyramid LK, MediaPlayer, and Zitnick et al.

References

[1] J. K. Aggarwal and N. Nandhakumar. On the computation of
motion from sequences of images—a review. Proceedings of
the IEEE, 76(8):917-935, 1988.

[2] J. Barron, D. Fleet, and S. Beauchemin. Performance of op-
tical flow techniques. IJCV, 12(1):43-77, 1994.

[3] T. Beier and S. Neely. Feature-based image metamorphosis.
SIGGRAPH, 26(2):35-42, 1992.

[4] M. J. Black and P. Anandan. The robust estimation of mul-
tiple motions: Parametric and piecewise-smooth flow fields.
CVIU, 63(1):75-104, 1996.

[5] J. Bouguet. Pyramidal implementation of the Lucas-Kanade
feature tracker: description of the algorithm. Technical
report, OpenCV Document, Intel Microprocessor Research
Labs, 2000.

[6] A. Bruhn, J. Weickert, and C. Schnorr. Lucas/Kanade meets
Horn/Schunck: Combining local and global optic flow meth-
ods. IJCV, 61(3):211-231, 2005.

[7]1 T. Driemeyer. Rendering with mental ray. Springer-Verlag
New York, Inc., New York, NY, USA, 2001.

[8] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of
object categories. PAMI, 28(4):594-611, 2006.

[9] D. Fleet and A. Jepson. Computation of component im-
age velocity from local phase information. IJCV, 5:77-104,
1990.

[10] B. K. P. Horn. Robot Vision. MIT Press, Cambridge, Mas-
sachusetts, 1986.

[11] B. D. Lucas and T. Kanade. An iterative image registra-
tion technique with an application in stereo vision. In IJCAI,
pages 674-679, 1981.

[12] B. McCane, K. Novins, D. Crannitch, and B. Galvin. On
benchmarking optical flow. CVIU, 84:126-143, 2001.

[13] Microsoft Corporation. Media player 9 video quality
demos. http://www.microsoft.com/windows/windowsmedia/
demos/video_quality_demos.aspx.

[14] A. Mitiche and P. Bouthemy. Computation and analysis of
image motion: A synopsis of current problems and methods.
IJCV, 19(1):29-55, 1996.

[15] Mova LLC. Contour reality capture. http://www.mova.com/.

[16] M. Otte and H.-H. Nagel. Optical flow estimation: advances
and comparisons. In ECCV, pages 51-60, 1994.

[17] P. Philips, W. Scruggs, A. O’Toole, P. Flynn, K. Bowyer,
C. Schott, and M. Sharpe. FRVT 2006 and ICE 2006 large-
scale results. Technical Report NISTIR 7408, National Insti-
tute of Standards and Technology, 2007.

[18] D. Scharstein and C. Pal. Learning conditional random fields
for stereo. In CVPR, 2007.

[19] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. [JCV,
47(1-3):7-42, 2002.

[20] D. Scharstein and R. Szeliski. High-accuracy stereo depth
maps using structured light. In CVPR, pages 195-202, 2003.

[21] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
A comparison and evaluation of multi-view stereo recon-
struction algorithms. In CVPR, pages 519-526, 2006.

[22] J. Shade, S. Gortler, L.-W. He, and R. Szeliski. Layered
depth images. In SIGGRAPH, pages 231-242, 1998.

[23] C. Stiller and J. Konrad. Estimating motion in image se-
quences: A tutorial on modeling and computation of 2D mo-
tion. IEEE Signal Processing Magazine, 16(4):70-91, 1999.

[24] S. Sun, D. Haynor, and Y. Kim. Motion estimation based
on optical flow with adaptive gradients. In /CIP, pages 852—
855, 2000.

[25] R. Szeliski. A multi-view approach to motion and stereo. In
CVPR, volume 1, pages 157-163, 1999.

[26] R. Szeliski. Prediction error as a quality metric for motion
and stereo. In ICCV, pages 781-788, 1999.

[27] C. Zitnick, S. Kang, M. Uyttendaele, S. Winder, and
R. Szeliski. High-quality video view interpolation using
a layered representation. ACM Transactions on Graphics,
23(3):600-608, 2004.

[28] C. L. Zitnick, N. Jojic, and S. B. Kang. Consistent segmen-
tation for optical flow estimation. In /CCV, volume 2, pages
1308-1315, 2005.

A. Frame Interpolation Algorithm

We briefly describe the interpolation algorithm used to
compute all the interpolation results in this paper. Our algo-
rithm takes a single flow field ug and constructs an interpo-
lated frame I that is a temporal distance ¢ € (0, 1) between
the first and second frames Iy and I;. We use both frames to
generate the actual intensity values, as described below. In
all the experiments in this paper ¢ = 0.5. Our algorithm is
closely related to previous algorithms for depth-based frame
interpolation [22, 27] and performs the following steps:

1. Take the flow from I to I and forward warp (or splat)
each flow value to the nearest destination pixel:

u, (round(x + tug(x))) = up(x).

2. Fill in any holes in the extrapolated motion field uy.
(We use a simple outside-in filling strategy.)

3. Fetch the corresponding intensity values from both the
first and second image and blend them together [3],

I(x) = (1—t)Io(x—tuy(x)) + 1 (x+ (1 — t)ug (x)).

Bilinear interpolation is used to sample the images.



