
R&D Meets Production:
The Dark Side

J.P.Lewis

zilla@computer.org

Disney The Secret Lab

Disney/Lewis: R&D ↔ Production – The Dark Side – p.1/46

R&D → Production Issues

• R&D ↔ Production interaction is not always
easy. In fact...

• R&D team: not completely sure if it can be
done, or how long it will take.

• Producers: need to get it done and know
how long it will take

Can we improve this situation?

Disney/Lewis: R&D ↔ Production – The Dark Side – p.2/46

Topics

• Humor: anecdotes in course book (+ some
R&D successes)

• Math: Paradox meets math: Halting, Godel
incompleteness, meets...
Liar paradox: person from Canada says, “all people
from Canada are liars.”

• ...paradox + math meets software R&D

• what is creativity?

Disney/Lewis: R&D ↔ Production – The Dark Side – p.3/46

Large Limits to Software Estimation

J. P. Lewis, Large Limits to Software Estimation
ACM Software Engineering Notes
Vol 26, No. 4 July 2001 p. 54-59

• How I came to this...
• R&D i.e. software (in general sense-

including shaders, scripting, ...)

Disney/Lewis: R&D ↔ Production – The Dark Side – p.4/46

Big Failures of Software Estimation

• An unpublished review of 17 major DOD
software contracts found that the average
28-month schedule was missed by 20
months, and no project was on time.

• Air traffic control AAS system: $6.5 billion.
"The greatest debacle in the history of
organized work...we learned nothing from it"

Disney/Lewis: R&D ↔ Production – The Dark Side – p.5/46

*Software: It’s Chaos

• GAO-93-13 on major software challenges:
“We have repeatedly reported on cost rising
by millions of dollars, schedule delays of not
months but years, and multi-billion-dollar
systems that don’t perform as envisioned.”

• California child support: $100 million, US
medical claims: $92 million, IRS: several
billion

Disney/Lewis: R&D ↔ Production – The Dark Side – p.6/46

What is Software Estimation

• Estimation of development schedules,
program complexity, programmer productivity,
program reliability

• Software Process Management: managing
the software development process

• Capability Maturity Model, ISO-900x

Disney/Lewis: R&D ↔ Production – The Dark Side – p.7/46

*Capability Maturity Model

5 Levels:

1. Initial ("unpredictable")

2. Repeatable

3. Defined

4. Managed

5. Optimizing

Disney/Lewis: R&D ↔ Production – The Dark Side – p.8/46

*CMM Levels

• At the Defined Level, the standard process for developing and maintaining
software across the organization is documented, including both software
engineering and management processes, and these processes are integrated into
a coherent whole. ... The organization exploits effective software engineering
practices when standardizing its software processes.

• At the Managed Level, the organization sets quantitative quality goals for both
software products and processes. ...An organization-wide software process
database is used to collect and analyze the data available from the projects’
defined software processes. Software processes are instrumented with
well-defined and consistent measurements at Level 4.

Disney/Lewis: R&D ↔ Production – The Dark Side – p.9/46

Process Management evaluated

• Good intentions
• Engineering or philosophy? ("coherent

whole", "effective software engineering", etc.)
• Not always effective: One spectacular

development failure came from one of the few
CMM Level 4 organizations

Disney/Lewis: R&D ↔ Production – The Dark Side – p.10/46

Strong Claims?

• A software process manifesto: "In an immature
organization, there is no objective basis for judging
product quality or for solving product or process
problems...

[In a mature organization] There is an objective
quantitative basis for judging product quality and
analyzing problems with the product and process.
Schedules and budgets are based on historical
performance and are realistic."

Disney/Lewis: R&D ↔ Production – The Dark Side – p.11/46

*More Claims

• Quality framework document:: "Consistent
measurements provide data for doing the following:
Predicting the software attributes for schedules, cost,
and quality. ..."

• Course title: "Productivity Improvement through
Defect-Free Development"

Disney/Lewis: R&D ↔ Production – The Dark Side – p.12/46

Still More Claims

• Handbook of Quality Assurance: "In the
Certainty state [of quality management], the objective
of software development and software quality
management, producing quality software on time with
a set cost everytime, is possible."

• Book promoting a software estimation
package: "...software estimating can be a science,
not just an art. It really is possible to accurately and
consistently estimate costs and schedules for a wide
range of projects."

Disney/Lewis: R&D ↔ Production – The Dark Side – p.13/46

Empirical Studies

• Kemerer: 4 estimation algorithms on 15 large
projects for which historical data was
available. Post facto error in predicted
development time ranged from 85% to
>700%.

• DeMarco and Lister Programming
Benchmark: Size of code (loc) written by
different programmers to a single
specification varied by more than a factor of
10.

Disney/Lewis: R&D ↔ Production – The Dark Side – p.14/46

Problem!

• Estimation procedures take as input an
estimate of the complexity of the project – this
was obtained from historical data by Kemerer.

• How do we obtain this estimate for a new
project?

Disney/Lewis: R&D ↔ Production – The Dark Side – p.15/46

Absurd Example

• Gather data: the average programmer
completes a small programming exercise in
3.7 hours.

• Therefore, a new operating system release
can be completed by an average programmer
in 3.7 hours?

• Historical data do not help without an
estimate of the complexity of the future
project!

Disney/Lewis: R&D ↔ Production – The Dark Side – p.16/46

Algorithmic Complexity (AC)

• Kolmogorov Complexity
• KCS Complexity: Kolmogorov, Chaitin,

Solomonoff
• Complexity of a digital object:

The length of the shortest program
that produces that object.

Disney/Lewis: R&D ↔ Production – The Dark Side – p.17/46

AC is intuitive

• Consider

1111111...: for i to n print "1"

1313131...: for i to n print "13"

3423314...:* print "3423314........."

• * algorithmically random

Disney/Lewis: R&D ↔ Production – The Dark Side – p.18/46

What about Language?

AC is defined in the large:

Ku(x) ≤ Kp(x) + Op(1)

Pick any language. A translator from that
language to any other is a fixed size, e.g. 100K
bytes.
In the limit of large objects, the choice of
language is insignificant.

Disney/Lewis: R&D ↔ Production – The Dark Side – p.19/46

Algorithmic Complexity

• Objective (mathematical) definition complexity

• Intuitive

• Supports precise reasoning about related issues

• Addresses limitations of source code metrics (loc, fp):
that such metrics do not reflect the complexity of the
code

Disney/Lewis: R&D ↔ Production – The Dark Side – p.20/46

*AC Simplified

• Prefix Complexity
• Li and Vitanyi, Kolmogorov Complexity,

Springer

Disney/Lewis: R&D ↔ Production – The Dark Side – p.21/46

Flavor of AC Reasoning

• "WinZipper2000 is guaranteed to compress
any file"

• FALSE: there are 2N unique files of size N

bits. There are fewer than 2N possible files of
(compressed) size less than N bits. Not all 2N

files can be uniquely recovered.
• *Almost all objects are algorithmically

random.

Disney/Lewis: R&D ↔ Production – The Dark Side – p.22/46

Complexity Tower

• Impossible
• Intractable

(how much work is 264? 232 is “4 giga”, so if 4Ghz proc
takes 60 instructions → 4 giga-minutes = 8181 years!)

• Polynomial, Linear

Disney/Lewis: R&D ↔ Production – The Dark Side – p.23/46

Incompleteness

• Godel Incompleteness
• Halting problem, Rice’s theorem: there is no

program that can determine extensional
properties of all programs

• C(x) is not computable

Disney/Lewis: R&D ↔ Production – The Dark Side – p.24/46

AC Proof of Godel Incompleteness

• A formal theory with N bits of axioms and statements

C(x) > L

contains many such statements that cannot be proved
when L is much greater than N .

• If C(x) > L is proved, save the particular x that was
found. This allows x : C(x) > L to be generated with
N + O(1) bits - contradiction.

Disney/Lewis: R&D ↔ Production – The Dark Side – p.25/46

Berry Paradox

• “The first number that requires more than a
thousand words to specify”

• is 12 words

Disney/Lewis: R&D ↔ Production – The Dark Side – p.26/46

*Incompleteness

• Out of an infinity of expressible true
statements C(x) > L, only a fixed number are
provable.

• A supposed ‘complexity’ software metric
written in 500loc cannot accurately
characterize most programs larger than this.

Disney/Lewis: R&D ↔ Production – The Dark Side – p.27/46

Church-Turing thesis

• (‘Objective’: a step-by-step process that leads
you to a common result)

• An objective process is essentially an
algorithm, whether undertaken by human or
computer.

Disney/Lewis: R&D ↔ Production – The Dark Side – p.28/46

Claim 1

• Program size and complexity cannot be
objectively and feasibly estimated a priori.

Disney/Lewis: R&D ↔ Production – The Dark Side – p.29/46

Because

• Claim 1: Program size and complexity cannot
be objectively and feasibly estimated a priori.

• In fact complexity cannot be feasibly
determined, period. (The size of a program is
≥ its complexity.)

Disney/Lewis: R&D ↔ Production – The Dark Side – p.30/46

*AC vs. the real world

• AC is output only
• Function arguments: AC of a large table

containing input-output pairs (’tabular size’)
• State: consider as implicit argument to any

routines that are affected
• Interactivity: bake the user input into the

program

Disney/Lewis: R&D ↔ Production – The Dark Side – p.31/46

Claim 2

• Claim 2: Development time cannot be
objectively predicted

• Claim 1: Program size and complexity cannot
be objectively and feasibly estimated a priori.

Disney/Lewis: R&D ↔ Production – The Dark Side – p.32/46

Because

• Claim 2: Development time cannot be
objectively predicted

• Objective development time estimate
depends on an objective estimate of the
complexity (recall absurd 3.7 hour example).

Disney/Lewis: R&D ↔ Production – The Dark Side – p.33/46

Claim 3

• Claim 3: Absolute productivity cannot be
objectively determined

• Claim 2: Development time cannot be
objectively predicted

• Claim 1: Program size and complexity cannot
be objectively and feasibly estimated a priori.

Disney/Lewis: R&D ↔ Production – The Dark Side – p.34/46

Because

• Claim 3: Absolute productivity cannot be
objectively determined

• Productivity: LOC / time? No,
complexity/time: finish a difficult (complex)
program quickly = high productivity.

• *Proviso: relative productivity can be
objectively estimated by experiment

Disney/Lewis: R&D ↔ Production – The Dark Side – p.35/46

Claim 4

• Claim 4: Program correctness cannot be
objectively determined.

• Claim 3: Absolute productivity cannot be
objectively determined

• Claim 2: Development time cannot be
objectively predicted

• Claim 1: Program size and complexity cannot
be objectively and feasibly estimated a priori.

Disney/Lewis: R&D ↔ Production – The Dark Side – p.36/46

Because

• Claim 4: Program correctness cannot
generally be proved.

• Suppose a proof F (P, S) that program P

correctly implements spec S. Then S is
formal and C(S) ≈ C(P). (Write a program
that exhaustively queries S to determine the
right output for a given input).

Disney/Lewis: R&D ↔ Production – The Dark Side – p.37/46

*Approximate Estimator?

• Find E : C(x) <= E(x) <= C(x) + b ?
• Apply triangle inequality

K(a|b) ≤ K(a|x) + K(x|b) + O(1)

to the two-part description:

K(K(p)|p) ≤ K(K(p)|B) + K(B|p) + O(1)

(B - set of programs [C(x) . . . C(x) + b])

• K(∗|B) ≤ log |B|

• But K(K(p)|p) 6= O(1)

Disney/Lewis: R&D ↔ Production – The Dark Side – p.38/46

*(note)

• Note on this:

K(K(p)|B) ≤ log |B| + O(1)

• The complexity is known to be within finite
bounds, so there are a finite number of
programs that can be run dovetail, one of
them is guaranteed to produce p.

Disney/Lewis: R&D ↔ Production – The Dark Side – p.39/46

Claim 5

• "K(B|b) 6= O(1)", meaning,
• Claim 5: There is no estimator which

produces a correct fixed bound on the
complexity of all inputs (programs).

Disney/Lewis: R&D ↔ Production – The Dark Side – p.40/46

Math = computation

Math = computation

• Axioms ↔ program input or initial state
• rules of inference ↔ program interpreter
• theorem(s) ↔ program output
• derivation ↔ computation

Godel ↔ halting ↔ C(x) 6= O(1)

Disney/Lewis: R&D ↔ Production – The Dark Side – p.41/46

Math = Computation

• Every even number is the sum of two primes?
• How long would it take you to write a program

to prove or disprove this? Write a program
that tests even numbers of increasing size. If
this program halts...

• Math = programming 6= manufacturing!

Disney/Lewis: R&D ↔ Production – The Dark Side – p.42/46

Conclusions

• Claims of objective estimation are wrong
• I did not say that estimation / process

management efforts are not helpful!
• Social responsibility
• Union: lighting is creative, programming not.

But if ‘creative’ is ‘that which cannot be
automated’, then programming is art, while
lighting may not be.

Disney/Lewis: R&D ↔ Production – The Dark Side – p.43/46

End

The phrase

“is self-referential, when preceeded by
itself”

is self-referential, when preceeded by itself.

Disney/Lewis: R&D ↔ Production – The Dark Side – p.44/46

“Research”

• Peer review

Disney/Lewis: R&D ↔ Production – The Dark Side – p.45/46

Large Limits to Software Estimation

• Producers need estimates of software
development times, but:

• Some of the stronger claims of Software
estimation/Software process management
advocates are directly contradicted by
Kolmogorov complexity.

Disney/Lewis: R&D ↔ Production – The Dark Side – p.46/46

	 R&D $
ightarrow $ Production Issues
	 Topics
	 Large Limits to Software Estimation
	 Big Failures of Software Estimation
	 *Software: It's Chaos
	 What is Software Estimation
	 *Capability Maturity Model
	 *CMM Levels
	 Process Management evaluated
	 Strong Claims?
	 *More Claims
	 Still More Claims
	 Empirical Studies
	 Problem!
	 Absurd Example
	 Algorithmic Complexity (AC)

	 AC is intuitive
	 What about Language?
	 Algorithmic Complexity
	 *AC Simplified
	 Flavor of AC Reasoning
	 Complexity Tower
	 Incompleteness
	 AC Proof of Godel Incompleteness
	 Berry Paradox
	 *Incompleteness
	 Church-Turing thesis
	 Claim 1
	 Because
	 *AC vs. the real world
	 Claim 2
	 Because
	 Claim 3
	 Because
	 Claim 4
	 Because
	 *Approximate Estimator?
	 *(note)

	 Claim 5
	 Math = computation
	 Math = Computation
	 Conclusions
	 End
	 ``Research''
	 Large Limits to Software Estimation

