
Large Limits to Software Estimation ACM Software Engineering Notes Vol 26, No. 4 July 2001 p. 54-59

Large Limits to Software Estimation
J. P. Lewis

Disney TSL
3100 Thornton Ave.,

Burbank CA 91506 USA
zilla@computer.org

Abstract
Algorithmic (KCS) complexity results can be interpreted as indi-
cating some limits to software estimation. While these limits are
abstract they nevertheless contradict enthusiastic claims occasion-
ally made by commercial software estimation advocates. Specifi-
cally, if it is accepted that algorithmic complexity is an appropriate
definition of the complexity of a programming project, then claims
of purely objective estimation of project complexity, development
time, and programmer productivity are necessarily incorrect.

Keywords
Estimation and metrics, project management, risks, ethical issues.

Introduction
Among the important practical problems in software engineering
is software estimation — the estimation of development sched-
ules and the assessment of productivity and quality. Is it possible
to apply mathematical and scientific principles to software esti-
mation, so that development schedules, productivity, and quality
might be objectively ascertained or estimated rather than being a
matter of opinion?

The debate over this question is familiar. In the case of develop-
ment schedules, for example, many programmers find it self ev-
ident that accurate and objective estimates are not possible. One
reader of an early version of this paper commented, “Software
practitioners know about poor predictability from empirical evi-
dence. I don’t need to prove it...”

On the other hand, there are a large number of design methods, de-
velopment processes, and programming methodologies that claim
or hint at objective estimation of development schedules, project
complexity, and programmer productivity. For example, a hand-
book of software quality assurance describes the benefits of a
quality management process [16]:

“In the Certainty state [of quality management], the ob-
jective of software development and software quality
management, producing quality software on time with
a set cost everytime, is possible.”

A software process manifesto states [14]

“[In a mature organization] There is an objective quan-
titative basis for judging product quality and analyzing
problems with the product and process. Schedules and
budgets are based on historical performance and are re-
alistic”

Similarly, a book promoting a software estimation package [15]
states that “...software estimating can be a science, not just an art.
It really is possible to accurately and consistently estimate costs
and schedules for a wide range of projects,” etc.

The answer to our question (‘can software be objectively esti-
mated?’) has both practical and ethical implications. Newspaper
headlines frequently describe the cancellation of costly software
projects that are behind schedule and over budget. With com-
puter programs now widely deployed in socially critical roles it
is recognized that software professionals have a responsibility to
make accurate and truthful characterizations of prospective soft-
ware sytems.

Given the existence of the various software methodologies and
processes alluded to above, it would be easy to conclude that the
problem is merely that these methods are not being practiced.
On the other hand, considering the wide variety of competing
methodologies and the well considered critiques of some of these
methodologies [1, 2, 3, 4, 8], one may be tempted to adopt an out-
side perspective and ask whether all of the stated goals of these
methodologies are possible even in principle.

In this paper we will look at software estimation from the point of
view of algorithmic or KCS (Kolmogorov-Chaitin-Solomonoff)
complexity. Section two introduces the notion of algorithmic
complexity. In sections three and four we will find that algorith-
mic complexity results can be directly interpreted as indicating
that software complexity, development schedules, and productiv-
ity cannot be objectively and feasibly estimated and so will re-
main a matter of opinion. Section five considers approximate and
statistical estimators. The situation here is more optimistic, but
we give reasons for maintaining a scepticism towards overly opti-
mistic claims of estimation accuracy. Although these are negative
results, we will argue in concluding that the software industry can
benefit from acknowledging and publicizing the inherent limita-
tions and risks of software development.

ALGORITHMIC COMPLEXITY
Algorithmic complexity (AC) defines the complexity of a digital
object to be the length of the shortest computer program that pro-
duces that object. This definition formalizes an intuitive notion of
complexity. Consider the three patterns:

11111111111111...
12312312312312...
30547430729732...

1

Large Limits to Software Estimation ACM Software Engineering Notes Vol 26, No. 4 July 2001 p. 54-59

These strings may be of the same length but the first two strings
appear to be simpler than the third. This subjective ranking is
reflected in the length of the programs needed to produce these
strings. For the first string the program is a few bytes in length,

for i:=1 to n print(’1’);

The program for the second string is slightly longer since it will
contain either nested loops or the literal ’123’. If there is no
obvious pattern to the third string, the shortest program to produce
it is the program that includes the whole string as literal data and
prints it — the string is incompressible or algorithmically random.

Ideally the complexity of an object should be a property only of
the object itself, but the choice of computer and programming lan-
guage affects program lengths. Algorithmic complexity handles
this issue by considering the complexity to be well defined only
for large objects. The choice of an inelegant language or machine
adds only a constant amount to the algorithmic complexity, since a
translator or simulator from any language or machine to any other
is a fixed-size program. In the limit of large objects this fixed size
becomes insignificant.

There are several major variants of AC (endmarker complexity,
prefix complexity, Chaitin’s prefix variant in which conditional
complexity is conditioned on a shortest program rather than on
an uncompressed string), but they are asymptotically similar. The
AC of a string will be denoted AC(x) when our purpose does not
distinguish these variants; we will switch to the notation K(x)
(prefix complexity) for the discussion of approximate bounds.

The flavor of algorithmic complexity reasoning will be shown
with the following theorem (it will also be used later in the pa-
per):

Chaitin Incompleteness theorem. A formal theory with N bits
of axioms cannot prove statements of the form ‘AC(x) > c’ if c is
much greater than N .

The proof is by contradiction. One makes the reasonable as-
sumption that if a statement AC(x) > c can be proved then it
should be possible to extract from the proof the particular x that is
used. Then by appending this extraction to the proof sequence (of
AC ≈ N) one can generate the string x using approximately N
bits. But the proof has shown that the AC of x is AC(x) > c > N
resulting in contradiction.

The proof is illuminated by recasting the formal system in com-
putational form. A formal system consists of a set of symbols;
a grammar for combining the symbols into statements; a set of
axioms, or statements that are accepted without proof; and rules
of inference for deriving new statements (theorems). A proof is
a listing of the sequence of inferences that derive a theorem. It
is required that a proof be formally (i.e. mechanically) verifiable.
Thus, there is a correspondence [18] between a formal system and
a computational system whereby a proof is essentially a string
processing computation:1

1This is an arguably idealized and restrictive notion of proof; see Naur [12] for
a discussion. Also note that there are alternate ways of defining the correspondence
between formal and computational systems.

axioms ⇐⇒ program input or initial state

rules of inference ⇐⇒ program interpreter

theorem(s) ⇐⇒ program output

derivation ⇐⇒ computation

Consider a program that will successively enumerate all possible
proofs in length order until it finds a proof of the form AC(x) > c,
which it will then output. The program and computer will need to
encode the axioms and rules of inference, which are N bits by
assumption. The program will also need to encode the constant
c. Say that the size of the search program including the encoded c
is AC(c) + N . Append a second algorithmically simple program
that extracts and prints the x from the proof found in the search.
Let k be the AC of the second program, plus, if necessary, the AC
of some scheme for delimiting and sequentially running the two
programs. We now have a compound program of AC AC(c) +
N + k.

It is possible to choose a c, such as 22
2···

, that is much larger than
N but whose AC is small. If c is picked as c > AC(c)+N+k then
either we have a program of AC < c that generates a string that is
proved to have AC > c (such a proof is then wrong, so the formal
system is unsound) or the program cannot prove statements of the
form AC(x) > c. Since the details of the formal system were
not specified, it is concluded that no formal system can prove that
strings are much more complicated than the axioms of the system
itself.

Definitions
A formal process is a specified and repeatable process that can be
followed by independent agents (computer or human) to arrive at
a common conclusion. We assume the Church-Turing thesis, that
any such process is essentially an algorithm even if the process is
in fact followed by humans rather than a computer.

An objective estimate is an estimate obtained via a formal process.

A feasible process is one that can be completed with conceivably
realizable time and other resources. Exponential time algorithms,
such as searching over the space of programs for one satisfying
some objective, are clearly infeasible. For example, searching all
possible program texts up to 100 bytes in length would require
considering some fraction of O(2800) possible texts – assuming
a processor capable of examining a billion (109) texts per second
this task would still require a number of centuries (far) larger than
can easily be described by common words denoting large numbers
(‘billion’, etc.).

Additional background on computability and KCS complexity is
found in textbooks [17, 10].

COMPLEXITY AND SCHEDULE ESTIMATES
Various software design methods and processes address the is-
sue of predicting development times. Software cost models es-
timate development time as a function of a size measure such as
source line counts or function points. Software process literature
and commercial software management tools have suggested that
cost models can be combined with historical data on development
times to predict the development times of future projects.

2

Large Limits to Software Estimation ACM Software Engineering Notes Vol 26, No. 4 July 2001 p. 54-59

In an extensive empirical study Kemerer benchmarked four soft-
ware cost estimation algorithms on data gathered from 15 large
projects for which accurate records were available. It was found
that these models had only limited predictive ability in ex post
facto estimation of the development times for completed projects
— the selected error measure (magnitude of error normalized by
the actual development time) ranged from 85 percent to more than
700 percent [9]. Kemerer indicates that the limited accuracy of
these models may be accounted for by variations in problem do-
main and other factors, and suggests that the models may be tuned
to be more accurate.

The limited accuracy of these cost models is not the fundamental
obstacle to software estimation however. Rather, since cost mod-
els are a function of a size or complexity measure, the issue is how
to estimate the size or complexity of a new project.

Consider the following scenario: A software company wishes to
improve the predictability of its software process, so it decides to
gather statistical data on development times. As part of this ef-
fort each programmer is assigned a timed series of exercises. It is
found that the average programmer at the company can complete
each exercise in an average of 3.7 hours. Now the company is
asked to bid on the development of an operating system for a ma-
jor company that is years behind schedule on their own operating
system development project. Based on the newly gathered statis-
tics, the company estimates that it can deliver the new operating
system in about 3.7 hours using one average programmer.

This absurd example is intended to clearly illustrate that estimates
of development time depend on estimates of the size or complex-
ity of a new program, and historical statistics cannot provide the
latter. In the preceding example the complexity of the proposed
operating system is presumably much greater than the complexity
of the programming exercises, but the data do not say anything
about the relative difference in complexity. Can complexity itself
be formally and feasibly determined or estimated a priori?

Claim 1: Program size and complexity cannot be feasibly esti-
mated a priori.

Algorithmic complexity shows that the minimal program size for
a desired task cannot be feasibly computed, and a trivial upper
bound on program size exists but is not useful.

Before discussing these results further we need to relate algorith-
mic complexity to real-world programs. Recall that algorithmic
complexity is defined as the minimum program size needed to
produce a desired output string. The complexity of a program that
produces a fixed output will be defined as the AC of that output.
Since this definition deals with output only we will briefly indicate
how arguments, state, and interactivity might be accommodated:

• interactivity: An interactive program can be considered as
a collection of subprograms that are called in sequence ac-
cording to user commands. These subprograms will share
subroutines and a global state. Ignoring arguments and state
for the moment, the AC of the program is the AC of the com-
bined subprograms, plus the AC of a small event loop that

calls the subprograms based on user input.2

• arguments: The AC of a function that depends on arguments
can be defined as the AC of a large table containing the
argument-value pairs interleaved in some fashion, plus the
AC of some scheme for delimiting the argument-value pairs,
plus the AC of a small program that retrieves an output given
the corresponding input. The size of this uncompressed tab-
ular representation will be called tabular size.

• state: State can be considered as an implicit argument to any
routines whose behavior is affected.

These comments are only a rough sketch at formulating the AC
of real-world programs, but the fidelity of this formulation is not
crucial to our argument: if the complexity of an output-only pro-
gram cannot be objectively determined, the addition of arguments,
state, and interactivity will not simplify things.

The following central results of algorithmic complexity show that
complexity is not feasibly computable.

• KCS noncomputability theorem: there is no algorithm for
computing the AC of an arbitrary string. Denote a shortest
program for producing a particular object x as x∗: AC(x∗|x)
is not recursive (computable). Rephrasing this for our pur-
poses, there is no algorithm for finding the shortest program
with a desired behavior.

• A trivial upper bound on program size (tabular size) can be
defined but is not feasible. A trivial upper bound on pro-
gram size is easy to define — it is simply size of the output
string or argument table describing the program’s behavior,
as sketched above. This ‘tabular size’ bound is not feasible
however. Consider a simple function that accepts two 32-bit
integer arguments and produces an integer result. This func-
tion can be represented as an integer-valued table with 264

entries. While small data types such as characters are some-
times processed in a tabular fashion, this example makes it
clear that tabular specification becomes infeasible even for
small functions involving several integers.

• An asymptotic upper bound to AC can be computed, but not
feasibly. One can write a search program that enumerates
all programs smaller than the tabular size in lexicographic
order, looking for the shortest one with the desired behav-
ior. Since many programs will loop the search program must
interleave the enumeration and execution of the programs.
That is, it runs each program constructed so far for a certain
number of time steps, collects results on programs that finish
during this time, and then it constructs the next program and

2It has recently been argued that interactive programs cannot be considered as
conventional Turing machine-equivalent algorithms, basically because (according
to this argument) human interaction should be considered as an intrinsic part of
an interactive program. In any particular run of a program, however, the human
input can be replaced with a recording of that input with no changes to either the
behavior of the program or to the program text. The AC of a program is therefore
independent of this debate over whether interactive programs should be considered
as Turing machine-equivalent.

3

Large Limits to Software Estimation ACM Software Engineering Notes Vol 26, No. 4 July 2001 p. 54-59

begins running it along with previously constructed programs
that are still active. The search program will asymptotically
identify smaller programs with the desired behavior but there
is no way to know if a long-running program is looping or if
it will finish and prove to be a still smaller representation of
the desired function. This approach is infeasible, in part be-
cause the number of programs to be checked is exponential
in the tabular size.

The preceding comments indicate that there is no way to objec-
tively define the algorithmic complexity of a program. The min-
imal program size cannot be feasibly computed, and the trivial
upper bound vastly overestimates the size of a realistic program.
In fact, the ratio between the tabular size and the (uncomputable)
AC, considered as a function of the tabular size, is known to grow
as fast as any computable function.

Claim 2: Development time cannot be objectively predicted.

Since it is clear that development time estimates must consider
program size or complexity among other factors, this claim is a
direct consequence of the fact that program size cannot be objec-
tively predicted. There is some limit on the speed at which a pro-
grammer can write code, so any development time estimate that is
supposed to be independent of program size will be wrong if the
program turns out to be larger than can be constructed during the
estimated time period.

These comments apply to programming problems in general. Is
it possible to do better in particular cases? For example, suppose
a company has developed a particular program. If it is asked to
write the same program again, it now has an objective estimate
of the program size and development time. In practice this is
a common scenario, since it is often necessary to recode legacy
software for a different language or platform. But is there a mid-
dle ground between having no objective estimate and an estimate
based on an identical completed project? Clearly the parts of a
project that are similar to previous projects will be estimated more
accurately. The remaining parts, even if they are small, can be
problematic. We can guess how long the coding will take, but
since the necessary coding time for a even small function may
range from a few hours to perhaps years (if the routine is equiv-
alent to an as yet unsolved mathematical problem, c.f. the formal
system↔computation equivalence described in section two), there
is no way to objectively know in advance how long the develop-
ment will take. Most experienced programmers have encountered
projects where an apparently trivial subproblem turns out to be
more difficult than the major anticipated problems.

ESTIMATION OF PRODUCTIVITY
A wide variety of programming disciplines and processes have
been proposed in the past several decades. Many of these pro-
posals are justified by way of claims that programming productiv-
ity is increased. On the other hand, recent studies have shown
that programmers average only a few delivered lines of code
per day. Have structured programming, object-oriented program-
ming, CASE, 4GLs, object-oriented design, design patterns, or
other trends resulted in greater productivity, and if so, is there any

way of objectively determining which of these techniques result
in the greatest productivity gains?

Claim 3: Absolute productivity cannot be objectively determined.

Consider a statement that N lines of source code were developed
in T time, with N/T higher than measured on other projects. This
suggests that higher productivity has been achieved. But produc-
tivity is relevantly defined as the speed of solving the problem, not
the speed of developing lines of code. If the N is significantly
higher than it needs to be for the particular problem then a high
N/T ratio may actually represent low productivity. This is not
merely a theoretical possibility: DeMarco and Lister’s program-
ming benchmarks empirically showed a 10-to-1 size range among
programs written in the same language to the same specification
[7].

We conclude that since there is no feasible way to determine
program complexity, productivity cannot be compared across
projects. This position has been arrived at previously using less
formal arguments — it is commonly noted that measures such as
lines of code and function points may not reflect domain and prob-
lem specific variations in complexity.

Proviso: The relative effectiveness of various software engineer-
ing methods can be determined by way of a comparative experi-
ment in which a fixed problem is solved by programming teams
using different methods. Since it is believed that that the effects
of programmer variability are much stronger than those due to
development methods (10-to-1 differences in productivity across
programmers working on the same problem have been found [11])
a large experiment might be necessary to achieve valid results.

WHAT ABOUT APPROXIMATE ESTIMATORS?
Though we have argued that absolute algorithmic complexity can-
not be estimated, there remains the possibility of a approximate or
statistical estimator E, say of the form

AC(x) ≤ E(x) ≤ AC(x) + b

for some bound b; for practical purposes this would be quite use-
ful. The situation in regards to such an estimator is not so clear
cut, but the following discussion may suggest maintaining a scep-
ticism towards claims of strong estimation accuracy, even of an
approximate sort.

The Chaitin incompleteness theorem (section two) is relevant.
Rephrased, it says that an approximate estimator program can-
not produce a lower bound on the complexity of programs much
larger than its own size.

We will now show that an approximate estimator E of the form
indicated above also cannot bound complexity to within a fixed
range. (We switch to the notation K(x) indicating the prefix com-
plexity.) Consider the supposed estimator as identifying a set B of
programs of complexity K(p) . . .K(p)+b that contains the given
program p. The complexity of the program can now be expressed
using a two-part description, the first part that of identifying the
set B; the second part that of identifying the particular program

4

Large Limits to Software Estimation ACM Software Engineering Notes Vol 26, No. 4 July 2001 p. 54-59

given B. Apply the triangle inequality

K(a|b) ≤ K(a|x) + K(x|b) + O(1)

to the two-part description:

K(K(p)|p) ≤ K(K(p)|B) + K(B|p) + O(1)

K(K(p)|B) ≤ log2 |B| + O(1): given the set, the size of a pro-
gram to identify the given member is at most the size of a pro-
gram that indexes into the set. Because K(K(p)|p) 6= O(1)
(complexity of complexity is not computable) this means that
K(B|p) 6= O(1), i.e.,
Claim 4: There is no estimator which produces a correct fixed
bound on the complexity of all inputs.

There are weaker alternatives which are still open to considera-
tion, e.g. a suite of programs each of which is only required to
bound the complexity of some subset of inputs, etc. Also the
O(1) constants are unknown and so it is possible that an estimator
could accurately bound the complexity of inputs up to some use-
ful threshold complexity. The preceding discussion does suggest,
however, that any claim of producing an accurate approximation
to AC should be examined carefully.

More generally, statistical estimation of complexity has an intrin-
sic problem that does not arise with common applications of statis-
tics such as estimating a population mean. The problem is that the
ground truth is unknown and unknowable, so it is not possible to
determine the bias and variance of different estimators. As such,
independent and disagreeing observers are not immediately lead
to a common conclusion because they can adopt differing estima-
tors to support their opinions.

This issue resembles the problem of defining and measuring psy-
chological characteristics such as intelligence. While there is no
absolute and objective measure of intelligence, ‘intelligence’ can
be somewhat circularly defined as the ability measured by an in-
telligence test. The merits of particular intelligence tests are then
debated by considering their correlation with measurable things
(such as school grades) that are considered to be related to in-
telligence. Similarly, there is no feasible objective measure of
complexity, but ‘complexity’ can be defined as the property mea-
sured by a proposed code metric. The particular estimate must
then be justified; this can be done by demonstrating a correlation
between the estimate and an expected correlate of complexity such
as measured development time. We conclude that approximate es-
timators should be selected based on empirical demonstrations of
utility.

CONCLUSIONS
We have argued that program complexity (and hence productivity)
cannot be objectively identified. Our conclusions will seem ob-
vious to many, and have been arrived at previously using informal
arguments. The algorithmic complexity perspective formalizes,
strengthens and simplifies these arguments.

Revisiting our assumptions.
Our arguments rest on the consideration of algorithmic complex-
ity as an appropriate definition of the complexity of programs. AC

is a precise and developed notion of complexity and it has been
applied in a variety of fields. The application of AC to the com-
plexity of programs seems evident. For example, AC addresses
the well known problems of code metrics – that they may not re-
flect the actual complexity of the code, for reasons such as coding
style, choice of language, or other reasons. The selection of an ap-
propriate definition of complexity is ultimately a point of philos-
ophy, however, since it is establishing a correspondence between
an intuitive notion and a formal one. We do not claim that AC
is the only complexity suitable for classifying programs, but it is
intuitively appealing and supports precise reasoning about related
issues.

Some of the implications of our perspective on the software engi-
neering debate will now be discussed.

Should software estimation be called “engineering”?
The answer to this question has important implications. If soft-
ware estimation is believed to be a codifiable engineering process
analogous to house building then litigation is a reasonable and
expected consequence of inaccurate estimations. This and sim-
ilar issues currently divide the software engineering community
into two camps — a “process” camp, who believe that quality
software can be developed on time if a particular software pro-
cess or programming technology is used, and a “problem solving”
camp, who believe that programming is fundamentally a process
of solving problems and as such intrinsically resists codification.
The problem solving viewpoint is represented in the software en-
gineering literature by Bollinger [5], who writes

“The creation of genuinely new software has far more in
common with developing a new theory of physics than
it does with producing cars or watches on an assembly
line.”

Bollinger further argues that the process viewpoint is not just in-
correct but possibly dangerous, since it focuses attention on codi-
fied procedures and away from the unknown and potentially risky
issues in development. Our conclusion supports the problem solv-
ing viewpoint at least in so far as the opposing (process) viewpoint
rests on hopes of objective estimation of software complexity.

Ethics
Though our conclusions may be considered a ‘negative result’,
we agree with authors [6] who warn that exaggerated claims
and overly optimistic estimates are harming the credibility of the
software industry and inviting litigation and possible regulation.
Credibility will not be achieved by continuing to promise that
software predictability is just around the corner. Instead, the soft-
ware industry should attend to the intrinsic uncertainties and risks
of software development and where necessary promote the public
discussion and honest assessment of these risks.

5

Large Limits to Software Estimation ACM Software Engineering Notes Vol 26, No. 4 July 2001 p. 54-59

REFERENCES
[1] D. E. Avison, H. U. Shah, and D. N. Wilson, “Software Quality Stan-

dards in Practice: The Limitations of Using ISO-9001 to Support
Software Development,” Software Quality Journal 3, p. 105-111,
1994.

[2] J. Bach, “The Immaturity of the CMM,” American Programmer,
Sept. 1994.

[3] J. Bach, “Enough about Process: What We Need are Heros,” IEEE
Software Vol. 12, No. 2, Feb. 1995, pp. 96-98.

[4] T. Bollinger and C. McGowan, “A Critical Look at Software Capa-
bility Evaluation,” IEEE Software Vol. 8, No. 4, pp. 25-41, 1991.

[5] T. Bollinger, “The Interplay of Art and Science in Software,” IEEE
Computer, Oct. 1997, pp. 128, 125-126.

[6] R. Charette, “Are We Developers Liars or just Fools,” IEEE Com-
puter, July 1995 pp. 90-92.

[7] T. DeMarco, Why Does Software Cost So Much? and other Puzzles
of the Information Age, Dorset, New York, 1995.

[8] M. Fayad and M. Laitinen, “Process Assessment Considered Waste-
ful,” Communications ACM, Vol. 40, No. 11, November 1997,
pp. 125-128.

[9] C. F. Kemerer, “An Empirical Validation of Software Cost Estima-
tion Models,” Communications ACM, Vol. 30, No. 5, May 1987,
pp. 416-429.

[10] M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity
and its Applications, 2nd Ed., Springer, New York, 1997.

[11] S. McConnell, Rapid Development: Taming Wild Software Sched-
ules, Microsoft, Redmond, WA, 1996, p. 167.

[12] P. Naur, Knowing and the Mystique of Logic and Rules, Kluwer
Academic, Dordrecht, 1995.

[13] P. Neumann and contributors, “Risks to the Public” column, Soft-
ware Engineering Notes; also P. G. Neumann, B. Simons, and others,
“Inside Risks” column, Communications ACM.

[14] M. C. Paulk, B. Curtis, M. B. Chrissis, C. V. Weber, The Capability
Maturity Model for Software Version 1.1, CMU/SEI-93-TR-24 Feb.
93, p. 19.

[15] W. H. Roetzheim and R. A. Beasley, Software Project Cost and
Schedule Estimating: Best Practices, Prentice Hall, Upper Saddle
River, New Jersey, 1995, p. xvii.

[16] G. G. Schulmeyer, “Software Quality Lessons from the Quality Ex-
perts,” in G. G. Schulmeyer and J. I. McManus, Eds., Handbook of
Software Quality Assurance (2nd ed.), Nelson Canada, 1995. p. 76.

[17] C. H. Smith, A Recursive Introduction to the Theory of Computa-
tion, Springer Verlag, New York, 1994.

[18] K. Svozil, Randomness and Undecidability in Physics, World Sci-
entific, Singapore, 1993, pp. 30-35.

6

