
Optimal and Interactive Keyframe Selection for Motion Capture
Richard Roberts

Victoria University of
Wellington

richard.andrew.roberts@
gmail.com

J.P. Lewis
SEED, Electronic Arts and
Victoria University of

Wellington
noisebrain@gmail.com

Ken Anjyo
OLM Digital and CMIC,
Victoria University of

Wellington
anjyo@acm.org

Jaewoo Seo
Pinscreen

goongsang@gmail.com

Yeongho Seol
Weta Digital

seolyeongho@gmail.com

Frames extracted from an animation, before (right character in each panel) and after editing (left character) using our technique.

ABSTRACT
Motion capture is increasingly used in games and movies. However,
it often requires editing before it can be used. Unfortunately, edit-
ing is laborious because of the low-level representation of the data.
Existing motion editing methods accomplish modest changes, but
larger edits require the artist to “re-animate” the motion by manu-
ally selecting a subset of the frames as keyframes. In this paper, we
automatically find sets of frames that serve as keyframes for editing
the motion. We formulate the problem of selecting an optimal set
of keyframes as a type of shortest-path problem, and solve this
problem using efficient dynamic programming. Our algorithm can
simplify motion capture to around 10% of the original number of
frames while retaining most of its detail. By simplifying animation
with our algorithm, we realize a new approach to motion editing
and stylization founded on the time-tested keyframe interface.

CCS CONCEPTS
• Computing methodologies→ Motion capture;

KEYWORDS
motion capture, keyframe animation, dynamic programming

ACM Reference Format:
Richard Roberts, J.P. Lewis, Ken Anjyo, Jaewoo Seo, and Yeongho Seol.
2018. Optimal and Interactive Keyframe Selection for Motion Capture. In
SIGGRAPH Asia 2018 Technical Briefs (SA ’18 Technical Briefs), December
4–7, 2018, Tokyo, Japan. ACM, New York, NY, USA, 4 pages. https://doi.org/
10.1145/3283254.3283256

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SA ’18 Technical Briefs , December 4–7, 2018, Tokyo, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6062-3/18/12. . . $15.00
https://doi.org/10.1145/3283254.3283256

1 INTRODUCTION
Motion capture is widely used in games and movies, however it is
frequently necessary to edit the mocap for several reasons:

• The motion is “retargeted” to virtual fantasy characters with
different proportions, resulting in unrealistic poses.
• Interactions between characters, such as hugging orwrestling,
can introduce solving errors due to occlusion.
• The character’s recorded motion may not fit their virtual
environment, for example, if the height of a door handle does
not match the one in the recording studio.
• Especially in the case of games, movements may need to
be stylized to feel more rapid, to provide a more responsive
experience.
• The director may request other edits for a variety of reasons.

Unfortunately, it is not practical to edit mocap directly, for the
same reason that editing a picture by changing individual pixels
would be ineffective. A standard approach provided by leading
commercial software allows the motion editor to blend changes to a
given pose smoothly through the surrounding frames with a spline
falloff. This approach is suitable for relatively small and smooth
edits, but it raises the question of where to place the control vertices
or keyframes on such a spline. Simply placing keys at regular inter-
vals does not provide precise control since the range of influence
of each key is not related to the motion. For example, adjusting
the motion before a footstep but not afterwards generally requires
having a key located at the time of the step. As well, repeated appli-
cation of this technique risks distorting the character of the motion
[Lowe 2016]. In practice, when extensive editing is required motion
editors sometimes resort to manually deleting ranges of frames to
create an editable representation with a small number of frames
that can serve as keyframes [Lam 2017; Shelton 2017].

A number of pioneering motion editing techniques have been
introduced in the computer graphics literature. Space-time opti-
mization and sketching interfaces provide alternative and novel in-
terfaces and considerable power. On the other hand, motion editors

https://doi.org/10.1145/3283254.3283256
https://doi.org/10.1145/3283254.3283256
https://doi.org/10.1145/3283254.3283256

SA ’18 Technical Briefs , December 4–7, 2018, Tokyo, Japan Roberts, Lewis, Anjyo, Seo, Seol

1
2

3

4
5

6

a

aa

b

c

Figure 1: Picking important points on a motion using intu-
itive principles such as extrema (a) or points of high curva-
ture (b) can easily fail. In this diagram, the curve represents
the motion, and points are analogous to keyframes. The
points (1)..(6) summarize the curve well, though points (2),
(4), (5) are neither points of high curvature nor extrema. In-
stead of focusing on points individually, our approach con-
siders the error in approximating the motion by pairs of
points (visualized as the grey line). For anynumber of points,
we find the pairs of points that minimize this error.

and animators are usually trained in traditional keyframe anima-
tion, and commercial software has extensive and fluid support for
keyframe-based editing. As a result, modern techniques described
in the research literature have not yet been widely adopted.

A variety of key point and keyframe selection approaches exist.
While it is often assumed that points of high curvature or curvature
extrema provide good keypoints for approximating a curve, it is easy
to find counterexamples to these simple heuristics (Fig. 1). Greedy
algorithms such as variants of the well known Ramer-Douglas-
Peucker algorithm [Ramer 1972] often perform well, but generally
do not find the best possible solution.

Many existing techniques operate on individual parameter curves
(e.g. particular joint rotations) independently. Importantly, a tech-
nique suitable for professional use should allow the manipulation
of keyframes (KFs), since animation practice generally recommends
working in terms of poses whenmaking initial large-scale edits (this
is termed pose-to-pose animation), followed by editing of individual
curves as necessary [Roy 2013; White 2006].

To derive our solution to the keyframe selection problem, we
return to the idea of a keyframe. In a keyframe animation, the KFs
are a minimal set of poses that can be interpolated to closely approx-
imate the motion of the character or object. In abstract terms, these
KFs provide an economical set of parameters that provide complete
control over the animation. Given dense mocap data, we thus seek
a minimal set of frames that, when interpolated, provide the closest
approximation to the entire motion. This is a combinatorial prob-
lem as there are

(N
k

)
potential choices of k KFs that summarize N

frames. While this would be intractable, our problem is equivalent
to a particular form of the classic shortest path problem and has
an efficient dynamic programming algorithm to obtain the optimal
solution. In practice we find that optimal solutions can be found
in a reasonable time (e.g. less than a second for motion clips of
typical length) when implemented on a laptop computer. Our algo-
rithm, Salient Poses, provides the optimal solution for all numbers
of KFs less than or equal to a number requested by the artist at no
extra cost, thus allowing the artist to interactively browse solutions
with different numbers of KFs and select one that is best for their
particular editing purpose.

The resulting keyframe animation closely resembles the origi-
nal motion but is editable using the standard approaches and pol-
ished tools used by industry. The fine-scale detail lost though the
keyframe approximation can be saved by subtracting the approxi-
mation from the original, and some of this residual can be added
on top of the edited animation if desired.

2 METHOD
We discussed our research with seven professional motion editors
and animators from three major companies and found both agree-
ment and disagreement about how keyframes are used. From the
discussion, we concluded that the qualities of “good” keyframes in-
volve artistic judgement and individual artists do not always agree
on some aspects of what constitutes a “good” keyframe. Never-
theless, we found that extremes in the motion tend to be selected
as keyframes, and also that there are more keyframes in areas of
complex motion.

Considering the discussion from the perspective of approxima-
tion, we propose that keyframes are those frames that best allow the
remainder of the motion to be interpolated (Fig. 1).

To solve our problem, we express it as a particular form of the
shortest path problem [Bertsekas 1998], which can be solved with
dynamic programming. Refer to our online documentation for a
reference implementation.1

Each of N frames in the original mocap clip becomes a node in
a graph, with directed edges to all temporally subsequent nodes. A
node contains the joint positions of the pose that occurs at its corre-
sponding frame, forming a high-dimensional point. The weight of
an edge vi, j is the cost of approximating the high-dimensional mo-
tion between frames i, j by an approximation that uses nodes i and
j as keyframes. In our implementation, we quantify this approxima-
tion cost as the maximum perpendicular distance between a linear
interpolation of keyframes i and j, and the portion of the motion
lying between these two keyframes. Each frame corresponds to a
pose that we interpret as a point in high-dimensional space. With
this interpretation, the distance measure can be implemented easily
using a high dimensional point to line distance.2

Our problem differs only slightly from the single source all des-
tinations problem used to motivate the well known Dijkstra al-
gorithm [Dijkstra 1959]: in our problem the nodes have a total,
temporal ordering. We seek a single minimum-cost path from the
start node (the first frame of the mocap) to the end node (the last
frame) that passes through K intermediate nodes while skipping
the remaining nodes. K is interactively specified by the artist.

2.1 All-Pairs Table
A table of all

(N
2
)
edge costs is precomputed.

2.2 Successive Keyframe Selections
The error for an optimal approximation of the motion using m
keyframes is

Emi, j = min
k

Em−1i,k + ek, j

1http://salientposes.com
2We experimented with minimizing the integrated squared error between the high-
dimensional curve and its approximation. That did not give any clear advantage and
so we use the infinity norm for simplicity.

http://salientposes.com

Optimal and Interactive Keyframe Selection for Motion Capture SA ’18 Technical Briefs , December 4–7, 2018, Tokyo, Japan

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

20

40

60

80

100

Lim & Thalmann
Salient Poses

(a) Capoeira, 105 frames (b) Quarterback Pass, 460
frames

Figure 2: A comparison between our optimal approximation
and the greedy-approximation algorithm [Lim and Thal-
mann 2001]. The vertical axes are the amount of compres-
sion, and the horizontal axes depict the distance between the
original animation and the motion reconstructed from the
keyframes, specifically, the Euclidean distance between cor-
responding pairs of frames, averaged over both joints and
frames, and normalized into meters assuming the charac-
ter’s height is 1.7m. The annotated points A, B in figure (b)
are discussed in the text.

with E1i, j ≡ ei, j . In this notation E1i, j involves two KFs; we always
take the first and last frames as KFs. Note that the computation
for stepm is reused in stepm + 1, thereby resulting in a dynamic
programming optimization.

The selected keyframes are identified during this computation
as

argmin
k

Em−1i,k + ek, j

Note that the computation produces keyframe selections for all
m ≤ K . This is useful as it allows the artist to interactively browse
solutions with various numbers of keyframes and pick one that
provides the best trade-off between fidelity and editability.

2.3 Run time
The all pairs table has

(N
2
)
unique entries and hence quadratic cost.

The entries can be computed independently and are computed in
parallel on the GPU in our implementation. The cost of this step is
typically insignificant compared to the time required for common
operations such as opening user interface windows. The dynamic
programming algorithm runs on the CPU. The cost of each step is
approximately quadratic, resulting from the search over k, j, and
the overall cost is approximately cubic. The algorithm only needs
to proceed as far as K keyframes, however the expected number
K generally grows with the length of the mocap sequence, so it is
reasonable to summarize the algorithm cost as O (N 3).

In practice, our algorithm provides interactive performance for
mocap sequences of typical length. Motion pictures are composed
of “shots” that typically last between 4-6 seconds [Kaufman and
Simonton 2014, p .126] or often less in action-heavy visual effects
sequences. For a shot containing 300 frames, less than one second
is required to find all optimal KF solutions of 50% compression or
more (K ≥ N /2) on using a laptop with a low-end current GPU
(Intel Iris 550). If the motion is significantly longer than this, it
should be split in order to provide interactive performance.

(a) Greedily Selected, 5
Keyframes

(b) Optimally Selected, 5
Keyframes

Figure 3: These time-lapse renders compare keyframes se-
lected greedily (left) and optimally (right). The keyframes
are drawn in red and the in-betweens in semi-transparent
grey. An advantage of the optimal approach is that the
keyframes are distributed to best approximate themotion in
every selection. The distribution is useful for editing, since
the control afforded by the keyframes is proportional to sig-
nificant changes in pose.

0.000 0.005 0.010 0.015 0.020 0.025 0.030

20

30

40

50

60

70

80

90

100

Maya Simplify Curves
Principle Component Analysis
Salient Poses

(a) Jumping Down, 160 frames

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

20

30

40

50

60

70

80

90

100

Maya Simplify Curves
Principle Component Analysis
Salient Poses

(b) Sword Attack, 140 frames

Figure 4: A comparison between our optimal approximation,
our implementation of pose-based PCA, and Maya’s "Sim-
plify Curves" algorithm. The axes are the same as those in
Fig. 2.

3 RESULTS
The following results were created using animations from Adobe’s
Mixamo library.3 The complete set of results can be viewed online.4

3.1 Comparison to Greedy Algorithm
Fig. 2 shows the approximation performance of our algorithm ver-
sus the algorithm in [Lim and Thalmann 2001]. The performance
of [Lim and Thalmann 2001] is sometimes quite good, however our
algorithm is always at least as good and often better. Our optimal
algorithm is more costly than [Lim and Thalmann 2001], however
the cost is not prohibitive (Section 2.3).

Fig. 3 compares the results of the greedy algorithm and our
algorithm on selecting KFs from a mocap sequence with 140 frames.
The better distribution of KFs provided by our algorithm is evident
by inspecting this figure.

3.2 Approximation error vs. compression:
Maya, PCA, Ours

Fig. 4 compares the compression (vertical axis) versus average error
(horizontal axis) obtained with our algorithm, PCA, and Maya. Note
that these curveswere obtained by selecting a compression level and
plotting the resulting error, thus, the x-coordinate is a function of
the y-coordinate rather than the more common y = f (x). We chose
this visualization to highlight the amount of compression obtained

3https://www.mixamo.com
4http://salientposes.com/results

https://www.mixamo.com
http://salientposes.com/results

SA ’18 Technical Briefs , December 4–7, 2018, Tokyo, Japan Roberts, Lewis, Anjyo, Seo, Seol

for a particular error. The PCA compression was computed by
treating each pose as a datapoint, meaning that each reconstructed
frame is a weighted combination of eigenvectors, rather than the
alternatives of compressing curves or space-time windows.

In this comparison the simplification performed by Maya does
not find keyframes, rather it finds keys independently on each
curve. The total number of found keys was manually adjusted to
match the number of keys in the keyframes (number of keyframes
multiplied by the number of degrees of freedom) used by our al-
gorithm. This difference benefits Maya in the comparison, since
greater compression can be achieved when choosing keys for each
DOF independently (the keys are not organized as KFs across the
set of curves). In any case Maya’s results are not competitive.

Although our method is not primarily intended for compression,
we see that it comes within 5% of this naive application of PCA.
This could be of secondary benefit to games that use keyframes for
compression, since it eliminates the need to maintain a separate
compressed representation.5 On the other hand if compression is a
primary concern then a separate compression algorithm should be
employed.

4 DISCUSSION AND CONCLUSION
The representations and approaches preferred by artists are often
characterized by a combination of semantically meaningful param-
eters, high-level control, and an aesthetic appeal that may relate
to simplicity and predictability.6 The keyframe representation of
motion is one such representation that has stood the test of time
and continues to be used by artists in both 2D and 3D media.

In this paper we introduce a solution to the important problem of
editing motion capture, by converting the mocap into a keyframe
representation that supports editing using traditional tools and
approaches. Our algorithm is designed to satisfy the artists’ com-
mon preference for keypoints that align on the same frames, i.e.
keyframes. The algorithm is both simple and optimal. It produces a
range of solutions with differing numbers of keyframes, allowing
the artist to intuitively browse the solutions and pick one that offers
the desired trade-off between detail and control.

In terms of evaluation, given the same choice of error measure
our optimal solution outperforms competing greedy algorithms by
definition. It also outperforms a leading commercial tool, even with
the handicap that the commercial tool produces a similar number
of keypoints without grouping them into keyframes.

We have shown the tool to artists at three internationally known
companies from the video game, cartoon animation, and visual
effects industries. An initial version of our program was described
as “a life changing tool”, another artist commented that it makes
it “a lot easier to visualize the movement as a series of poses”, and
another said that it would be ideal for stylizing motion capture for
use in action-focused games. More generally, the artists felt that

5In games it is generally desirable or necessary to compress the motion, since the
expected movement sets of all characters must either be stored in limited GPU memory
(along with the geometry and textures of all objects in the scene), or the motion of
every character must be streamed to the GPU. In either case the resource (memory or
bandwidth) is in demand and must be optimized.
6For example, meshes that have a desirable distribution of polygons are referred to as
having “edgeflow”.

our algorithm reduces the time and cost required for motion editing
and stylization.

4.1 Limitations
Our algorithm has several evident limitations.

Asymptotic complexity. As mentioned previously, very long mo-
tion capture clips may need to be split if interactive performance is
desired.

Sweet spots. The approximation error does not always decay
smoothly as more KFs are added. On the contrary, there are error
“cliffs” where the addition of a single KF produces a noticeable
reduction in error, followed sometimes by “plateaus” where a few
additional KFs provide little improvement (points A,B in Fig. 2 (b)).
Currently it is up to the artist to interactively browse the solutions
for various K and select the best one according to their judgement.

4.2 Future Work
While we feel that our algorithm provides a good general solution
for converting motion capture into an editable representation, there
remains much work to be done to more fully formalize and support
the motion editor’s craft.

Animation concepts. A challenging open problem is to more fully
express animation concepts such as “leading part” [Lasseter 1987]
in a keyframe-based editing framework. We speculate that this
challenging problem will, at least, require re-thinking the holistic
one-fits-all approximation error we have employed in this work.

Spline fitting. Another topic for future work is that of spline fit-
ting. While spline fitting is often considered to be a solved problem,
our experience with published fitting algorithms reveals that clear
improvements can often be obtained with manual adjustments to
the curve tangents

ACKNOWLEDGMENTS
Many researchers and artists have contributed important insights
to this research. The authors would like to call special thanks to
Ayumi Kimura and other staff of OLM Digital, to Johan Andersson,
Ida Winterhaven, and Binh Le of SEED, Electronic Arts, and also
to Ian Loh and other staff of Victoria University of Wellington’s
Computational Media Innovation Centre and Virtual World’s Lab.

REFERENCES
Dimitri P. Bertsekas. 1998. Network Optimization: Continuous and Discrete Models.

Athena Scientific.
E. W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numerische

Mathematik 1, 1 (1959), 269–271.
J.C. Kaufman and D.K. Simonton. 2014. The Social Science of Cinema. Oxford U. Press.
David Lam. 2017. Personal communication. Electronic Arts.
John Lasseter. 1987. Principles of Traditional Animation Applied to 3D Computer

Animation. SIGGRAPH 21, 4 (1987), 35–44.
Ik Soo Lim and D. Thalmann. 2001. Key-posture extraction out of human motion data.

In Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual
International Conference of the IEEE, Vol. 2. 1167–1169.

Dan Lowe. 2016. Animation Bootcamp: The ’Animate’ Button. (2016). GameDevelopers
Conference.

Urs Ramer. 1972. An Iterative Procedure for the Polygonal Approximation of Plane
Curves. Computer Graphics and Image Processing 1, 3 (1972), 244 – 256.

Kenny Roy. 2013. How to Cheat in Maya 2014 : Tools and Techniques for Character
Animation. Focal Press, Burlington, MA.

Damon Shelton. 2017. Personal communication. Electronic Arts.
Tony White. 2006. Animation from Pencils to Pixels : Classical Techniques for Digital

Animators. Focal Press, Burlington, MA Oxford.

	Abstract
	1 Introduction
	2 Method
	2.1 All-Pairs Table
	2.2 Successive Keyframe Selections
	2.3 Run time

	3 Results
	3.1 Comparison to Greedy Algorithm
	3.2 Approximation error vs. compression: Maya, PCA, Ours

	4 Discussion and Conclusion
	4.1 Limitations
	4.2 Future Work

	Acknowledgments
	References

