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Abstract—Motion capture is commonly used in movies and
games, and may become more widespread if anticipated virtual
reality and augmented reality applications become popular.
Unfortunately, body motion capture often suffers from significant
noise resulting from intrinsic factors not present in other media
such as images and videos. This paper adapts the non-local means
(NLM) principle from image processing to noise reduction in
motion capture data. We show that the NLM principle can be
applied in this context by operating in the vector space obtained
through a log/exponential map, thereby respecting the rotational
nature of skeletal movement. The resulting algorithm is efficient,
surprisingly effective, and requires no training or access to data
other than the motion clip itself. Our results rival or outperform
other techniques in a survey of standard denoising methods in
signal processing.

Index Terms—motion capture, noise, denoising, noise reduc-
tion, character animation

I. INTRODUCTION

Motion capture (“mocap”) is widely employed in movies
and games, and the Microsoft Kinect has made motion capture
relatively commonplace. Future virtual reality and augmented
reality online spaces may make motion capture ubiquitous.

Unfortunately existing motion capture systems produce re-
sults that are corrupted by noise to a greater or lesser extent.
If this noise is not removed, the illusion of a virtual character
presence is compromised. Human motion denoising is difficult
because the body has a large number of degrees of freedom
(often 100 or more, depending on the chosen model) with
hierarchical rotational movement [1]. The ‘manifold’ of the
movement is complex and non-Euclidean. Each of these fac-
tors is challenging in their own right; when coupled together,
slight changes in the data can create unrealistic motion.

One cause of motion capture noise is noise at the sensor
level, such as multipath effects in time-of-flight sensors, and
inexact discrimination between the body or motion capture
markers and the background. A more intrinsic source of noise
arises due to the estimation of the skeleton pose. Here, it
is necessary to estimate the position of body parts that are
occluded, and any error in this estimate will result in a visible
discontinuity or “pop” when the part becomes visible again.
High-end motion capture systems reduce this problem through
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the use of many cameras (more than 100 may be used on a
large motion capture stage). However the problem reappears in
complex motion capture scenarios due to the occlusion caused
by multiple actors in close proximity. In severe cases, such
disocclusions can (depending on the skeleton solver) result a
body part or whole character flipping orientation.

From Newton’s second law, the velocity of the actor is
the integral of applied forces including muscle forces applied
by the actor. The actor’s movement thus has a first-order
smoothness almost everywhere. Traditional motion capture
software exploited this by applying simple linear smoothing
filters (Gaussian, Butterworth, etc.) to remove noise. Un-
fortunately, while the motion is smooth almost everywhere,
it is not smooth everywhere. Foot steps and other impacts
are the exception to smooth motion. It is crucial to retain
these derivative discontinuities – failure to do so results in
the tracked feet not being in precise contact with the floor,
leading to the impression that a walking character is hovering,
sliding, or slightly penetrating the floor. As eloquently argued
in [2], no linear filter can simultaneously achieve the goals
of fully removing high frequencies and preserving derivative
discontinuities.

This has lead to more sophisticated nonlinear and data-
driven methods. These are briefly surveyed in Section 2.

Our research aims to find a noise reduction solution that:
• preserves motion details with little blurring or skating,
• requires no external training data and relies only on the

given animation,
• works at interactive computation speeds,
• reliably reduces noise for a variety of conditions.
• outperforms other denoising filters,
• is manifold-aware, whereby the procedure involves opera-

tions that respect the rotational nature of body movement.
To satisfy these goals, in this paper we introduce a new

approach to denoising motion capture based applying the non-
local-means principle in a manifold-aware fashion. Non-local
means (NLM) is an image processing technique that performs
a weighted average of similar but possibly non-adjacent image
patches for detail-preserving denoising [3]. The principle
assumes that similar image patches will have different noise,
and thus a weighted average will reduce noise while preserving
or enhancing detail. This detail preservation is important for
motion capture—it will enforce spatio-temporal cohesion in978-1-5386-4276-4/17/$31.00 ©2017 IEEE



the animation, preserving the ‘texture’ of the motion curves
(i.e. high frequency motion details).

A direct application of NLM to our problem is poorly
motivated, since NLM involves a weighted average based on
Euclidean distance, which is inappropriate for body motion.
To address this issue, we embed the NLM principle in a vector
space obtained by the log map of the body pose.

The resulting non-linear pose means (NLPM) algorithm
retains the strengths of its image-based predecessor. We
demonstrate the results on data provided by the Carnegie
Mellon University motion capture database [4]. The results
of our method outperform a number of standard alterna-
tive approaches. While we target an entertainment industry
scenario where the motion is denoised following capture,
but there is nothing in the method that prohibits an on-line
solution – this would only require restricting the patch window
(Section III-A) to be causal.

In the following sections, we will outline related work
in image and motion denoising, explain the non-local pose
means method, and compare the NLPM results to standard
benchmarks in this research domain.

II. BACKGROUND AND RELATED WORK

For the purpose of our review, generic imaging denoising
techniques may be divided into the categories of linear filters,
discontinuity-preserving methods, sparse-coding approaches,
data-driven methods, and others. Discontinuity-preserving
methods include bilateral filters [5], total-variation denoising
[6], anisotropic diffusion [7], and others. The methods above
make generic assumptions that may not be appropriate for
actual data. For example, linear filters assume the noise
has particular spectral content, whereas most edge-preserving
smoothing algorithms assume a piecewise constant signal.
Methods such as [8], [9] assume that the motion can be
sparsely represented in some (possibly overcomplete) basis,
and thus shrink or zero the small coefficients with respect to
this basis. These methods are simple, efficient, and reasonably
effective. Whereas wavelet shrinkage makes use of a data-
agnostic basis, data-driven methods such as KSVD [10] build
a basis or otherwise invoke properties or statistics of the
particular image or signal. Some data-driven methods [9] also
invoke the sparse-coding principle.

In our categorisation, NLM can be considered as a data-
driven method.

A. Motion Denoising

While the literature on image denoising is vast, the research
literature on motion denoising is also sizeable and too large
to fully survey here.

Many researchers have applied the aforementioned image
filters to motion capture, and this has provided common
benchmarks for comparison in this research area. In motion
denoising, researchers have come to prefer systems aware of
the spatio-temporal motion characteristics, such as dynamical
systems [11]. Linear dynamic systems (LDS) model observed

measurements as noisy linear projections that evolve via a low-
dimensional dynamic process—such as a Markov process, in
which the state evolution of a system is dependent on a finite
set of previous states [12], [13]. Temporal lag is a problem in
dynamical systems, as a time delay will offset the data [14],
[15]

Data-driven methods have been noted as the most successful
approach to motion denoising [1], [15]. Lou and Chai represent
the motion in terms of eigenvectors of a time-lapped covari-
ance matrix, and use a robust norm to reconstruct smoothed
motion without outliers. It denoises extremely well, but only
when the database contains similar ‘families’ of motion [15].
Xiao et al. [15] adopt ideas from K-SVD and sparse coding,
operating on overlapping segmented regions called poselets.
Feng et al. [14] similarly operate on a poselet representation.
These methods outperform the previous approaches, but rely
on pre-cleaned motion input libraries to function properly.

1) Denoising in Commercial Animation Software: Com-
mercial motion-capture editing software occasionally offers
some forms of denoising. Blender, Maya, Motion Builder [16],
and other major animation software titles often rely on simple
signal processing and are seldom bundled with extensive
denoising features. Motion Builder is designed specifically for
motion editing and contains the most comprehensive collection
of animation data tools: Gaussian, Butterworth, smoothing,
resampling, and other rudimentary signal processing functions
are available for minor edits. Blender 3D features a simple
weighted moving means function filter for smoothing bumps
in motion curves. This tool is very handy for eliminating basic
noise. We will compare Blender’s results to our own in the
evaluation section.

Fig. 1: An example of the non-local means algorithm. A noisy
pixel (centre of red square) is denoised by comparing its local
patch to other similar patches of pixels (black squares) inside
the search radius (blue square).

B. Non-local Means

Whereas a typical image or signal filter computes a
weighted average of surrounding pixels or samples, the NLM
principle computes weighted average of pixels taken from sim-
ilar but discontiguous neighbourhoods (Fig. 1), with weights



determined by the similarity of the patches. The principle is
that most small patches in an image are similar to other patches
elsewhere in the image [3]. For example, a portion of a brick
texture will be similar to other parts of the same texture, and
a small portion of the edge of a leaf may closely resemble
portions of the edges of other leaves in the image. By forming
an average of these patches, the per-patch noise is averaged
away while detail is often enhanced.

In more detail, given an image and and a specified search
window I of radius r < min(width(I), height(I)), for each
pixel, form the patch p of surrounding pixels and then create
the dictionary of the k most similar pixel patches qj , j ≤
k within the search window. Then non-local means can be
expressed as:

pfiltered(x, y) =
1

C(p)

∑
q∈I

q(x, y)f(p, q), (1)

where (x, y) are pixel coordinates and C(p) is the sum of the
(typically) Gaussian weights,

f(p, q) = e−
‖q−p‖2

2σ2 . (2)

Put simply, the output pixel is a normalised sum of the
most similar pixel patches in a search window. When p = q,
the Gaussian weight is equal to 1. To prevent a pixel from
weighting itself too highly, we instead assign it the maximum
weight of the other pixel patches [17].

1) Related Research for NLM: Later research [18] has
categorised NLM as a semi-local filter, rather than a truly
non-local one. Results are dependent on input image structure,
but the best output is usually constrained within a smaller
search window. As the training area tends toward non-locality
by expanding to the size of the image, the MSE declines for
many typical examples of pictures. This phenomenon is due
to the large number of small weights contained within the
oversized training window [18]. Too many weights, although
insignificant, lead to the averaging of dissimilar patches.

Conversely, in periodic images where patterns repeat them-
selves at a larger scale, increasing the radius of the search
window has a profound positive impact on mean-squared error
(MSE). When we later apply this technique to motion capture,
human motion can be both periodic and non-periodic, so it
is necessary to choose a locality measure for case-by-case
denoising.

Fig. 2 shows non-local means correcting a slightly corrupted
image. There is no visible blurring, and all of the noise appears
to be eliminated.

The high-dimensional nearest-neighbour search implicit in
(1) is costly and has been accelerated with a number of
schemes in recent research. Goossens et al. [19] criticise the
algorithm for its O(n4) complexity, which is impractical in a
large 2D image arrays. A later paper introduces an accelerated
scheme [20]. Other research enhancements to NLM include
FFT-inspired acceleration [21], integration with the Laplacian
Pyramid [21], and a GPU-based implementation [22].

Goossens et al. also observe that NLM is the first iteration of
a Jacobi algorithm, and offer improvements from this method.

Fig. 2: Non-local means denoising of an image. Denoised
output image (left), from the badly noised input image (right).

While they remark that NLM is not able to compete with the
recent trends in sparse-coding methods, their NLM method is
able to produce comparable results.

III. NON-LOCAL POSE MEANS

This section details our contribution to motion capture
denoising using the non-local means algorithm. We explain
our method for a novel adaptation of the image processing
technique to process n-dimensional rotation vectors.

A. Pre-processing Poses

The NLM algorithm in (1), (2) involves two
operations that are not suitable for body pose data.
The Euclidean distance ‖q − p‖ in (2) does not

A
B

respect the rotational nature of body poses.
However, it is monotonically related to the
correct distance, and so can be used in
the search for similar patches. The addition
operation in the weighted sum (1) presents
a more serious problem since it is used to
compute the result. For example, a convex
sum of two poses of a limb results in the limb changing length
(point A in the adjacent figure) rather than showing rotational
motion (point B).

The quaternion representation of rotations commonly used
in robotics, vision, and graphics does not solve this problem.
The product of quaternions is a rotation, however the weighted
sum of quaternions is not generally interpretable as a rotation.
To handle rotations correctly, we use log quaternions [23]. The
log quaternion represents rotations as vectors whose direction
is the axis of rotation and magnitude is the rotation angle.
Importantly, linear combinations of log-quaternions produce
valid rotations. Following the application of the weighted
blending analogous to (1), (2) but using a pose vector de-
scribed below, the result is exponentiated. The result is in
effect an exponential map for rotations, wherein the log-
quaternion representation provides a vector space structure
[24].

In general the exponential map is a diffeomorphism only
in a neighbourhood of the identity. This is not a problem in
NLPM because the poses that are averaged in (1) are chosen to
be similar. On the other hand, calculation of the log quaternion
can be unstable for extremely small rotations, which might



arise with NLPM. [23] provides an alternate computation that
addresses this issue. The subject of rotations is complex and
there are other forms of exponential map and other approaches
to averaging rotations. Our approach resembles a single step
of the gradient descent in a Karcher (manifold) mean [25]. We
found the log-quaternion approach to be simple and effective.

Much like the image-based NLM, we begin by pre-
processing the motion capture poses into patches of pose vec-
tors. The patch radius rp determines the number of included
poses from the animation timeline, forming a patch of size
(2rp + 1). The patch vector is expressed as:

P(t) = [p(−rp), · · · , p(−1), p(0), p(1), · · · , p(rp)]T

for pose p(t) and patch P(t) at time t in the mocap timeline.
When we calculate weights for points beyond the edges of
the data set, we optionally employ mirroring, Neumann (data
boundary gradient is held constant), or Dirichlet ( values are
assumed constant) boundary conditions [26]. The choice of
boundary condition should depend on the nature of the motion
bounds.

B. The Non-local Pose Mean Filter

1) Locality on the Manifold or Time Domain: The choice of
learning window determines the type of locality our algorithm
covers. A direct implementation of non-local means would
place the learning window bounds as the k-nearest pose
frames: p(t − k) < p(t) < p(t + k) for learning window
T of radius k frames.

2) The Pose Mean: The remainder of our algorithm follows
the original NLM scheme. Instead of a weighted-average
pixel, we will find the average pose determined by distance
weights. This average pose represents the average collection of
spherical joint rotations, i.e. the average pose on the animation
manifold. To denoise a pose corresponding to the patch P(t),
we calculate the Gaussian weights for all other patches Q(t):

f(p, q) = e−
‖Q−P‖2

2σ2 . (3)

The poses can be averaged via their weights,

Pfiltered(x, y) =
1

C(P)

∑
Q∈T

Q(t)f(P,Q), (4)

once again taking care to set P(t)’s weight to the maximum
weight of its neighbours.

IV. RESULTS AND EVALUATION

Here we present the results of our method, and evaluate the
NLPM noise reduction quality against some of the methods
discussed in the related works section. We demonstrate the
results on noisy data provided by the Carnegie Mellon Uni-
versity motion capture database [4].

Fig. 3: Non-local means applied to noisy motion capture data.
Top: Original data, with increasing degrees of Gaussian noise
from left to right (ranging from 1σ to 100σ). Bottom: The
recovered motion for each respective animation, after applying
non-local means.

A. Non-local Pose Means

Fig. 3 highlights our method’s noise reduction capabilities
for light to drastic jitters in a skeleton. The top row of
animated rigs feature a range of Gaussian additive noise, added
individually to each joint in the animated skeletal rig. Non-
local means can recover up to σ = 1 of normally-distributed
rotational noise while retaining the original motion. Beyond
this, even in the most extreme case of noise degradation the
original motion can be identified, although some distortion is
inevitable.

A strength of this algorithms is the ability to retain the
physics and timing constraints of the original motion. In
both low and high noise conditions, the foot contact remains
solid. This is due to the NLPM’s spatio-temporal gradient
preservation, which preserves ’hard edges’ in the motion
curves.

B. NLPM Benchmark Comparisons

Figure 4 shows the ground truth data, the noisy motion data,
and the NLPM denoised output. The output looks much like
the original, with a single sharp bend for all curves on the
far right side of the graph. This is due to a poor choice of
boundary condition, where mirroring causes abnormal weight
distributions. Generally, the Dirichlet condition (i.e. assuming
the gradient remains constant) works best.

In Figure 5, a single motion channel is isolated from these
dense figures, and we compare the NLPM result to ground
truth and noise signals. We can note some loss of precision,
and a small degree of temporal shifting (e.g. Fig. 5 at frame
90).

Table I compares the peak signal to noise ratios (PSNRs) of
the common motion denoising techniques that we discovered
in the literature review. We add normally-distributed noise
to the quaternion poses of the CMU library motion capture
data and compare the mean-squared error of the denoised
output to the original ground truth. For each denoising method,
care was taken to find the optimal input parameters for
the smoothest result, without sacrificing motion detail. We
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(a) Ground Truth curves for all rotations
in the motion graph
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(b) Added Gaussian noise to motion curves
(rotational σ = .4) for all rotations in the
motion graph
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(c) Non-local pose means solution for all
rotations in the motion graph, using noisy
curves from (a) as input

Fig. 4: Results Comparison For All Motion Channels

(a) NLPM vs. Ground Truth vs. Noisy data
for a single channel of joint rotation data.

(b) NLPM vs. Ground Truth vs. Noisy data
for a single channel of joint rotation data.

(c) NLPM vs. Ground Truth vs. Noisy data
for a single channel of joint rotation data.

Fig. 5: Results Comparison for Single Motion Channel

PSNR, when compared to ground truth
σ 15σ 30σ 50σ 75σ Impulse

Gaussian LPF 73.89 73.87 73.76 73.33 72.02 73.61
Kalman 80.46 80.42 78.50 73.83 – 80.01
Blender WMM 93.39 92.53 84.99 84.40 78.99 88.61
Wavelet 93.76 67.01 – – – 82.59
Butterworth 82.21 82.14 81.69 80.30 77.21 81.39
Our method 85.58 85.52 85.29 84.68 82.46 85.18

TABLE I: PSNR Noise Elimination Result Comparison. The
optimal result in each column has been emboldened or ex-
cluded where smooth data was not possible. σ = .008, added
in quaternion log-space.

used Matlab signal processing libraries for Gaussian, wavelet
thresholding, and Butterworth denoising. The python Kalman
filter implementation was borrowed from Bishop and Welch
[27], where it was optimised specifically for motion denoising
research.

We denoised a running character from the CMU library
and applied NLPM with a learning window of 21 poses, a
patch size of 11 poses, and a Gaussian width (σ = .008). In
every noise category, our method produced superior denoised-
signals that most resembled the ground truth data. As noise
degradation consumes the original data, PSNR slowly and
steadily declines in our method. In the most extreme noise,
the animated output appears smooth, but the physical actions
are visibly different. At 50σ, smoothed trembles appear for

the more prominent bones. In the other noise conditions, it is
difficult to visibly spot any difference between the denoised
animations.

Blender’s weighted moving means algorithm performs
equally well as or better than NLPM for small levels of
noise degradation, but worsens as noise increases. Our input
parameters were optimised for medium to high-levels of noise;
with further experimentation, NLPM may be able to match
Blender’s performance in the lower noise conditions. Regard-
less, the strong performance of NLPM against professional-
grade software is indicative of our method’s limited but
promising success.

Figures 6b and 6b depict an overlaid comparison of the
best denoising methods, for two different noise conditions.
Between these two graphs, NLPM shows the best consistency
and fewest artefacts. Blender’s method declines in quality, as
it derails from the ground truth between the two graphs. The
minimum of NLPM does not reach the same minimum as the
ground truth in this curve; this is an example of too many
dissimilar poses watering down the result with their accumu-
lated weights. A better non-local manifold parameterization
may correct this, but we must leave this optimisation for future
work.



Fig. 6: Results

(a) An overlaid comparison of all denoising methods from Table I,
for the light noise condition (15σ).

(b) An overlaid comparison of all denoising methods from Table I,
for the medium noise condition (30σ).

V. SUMMARY

We have examined image and signal filters for reducing
noise in motion capture. Our application of NLM rests on
preprocessing pose vectors from a manifold to a vector space
using the exponential map. We then apply non-local averages,
weighted by pose distance, to denoise the data.

NLPM produces high-quality denoised animation curves
without compromising detail. Our method consistently outper-
forms the published approaches listed in Table 1. Surprisingly,
Blender’s weighted moving means algorithm outperformed
NLPM for small amounts of noise, however our method
outperforms Blender for moderate and large amounts of noise.
Please see the associated videos for additional results.
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