
Face Stabilization by Mode Pursuit for Avatar
Construction in the Universe

Mathieu Lamarre
SEED, Electronic Arts

Montreal, Canada
mlamarre@ea.com

J.P. Lewis
SEED, Electronic Arts

Los Angeles, USA
noisebrain@gmail.com

Etienne Danvoye
SEED, Electronic Arts

Montreal, Canada
edanvoye@ea.com

Abstract—Avatars driven by facial motion capture are widely
used in games and movies, and may become the foundation
of future online virtual reality social spaces. In many of these
applications, it is necessary to disambiguate the rigid motion of
the skull from deformations due to changing facial expression.
This is required so that the expression can be isolated, analyzed,
and transferred to the virtual avatar. The problem of identifying
the skull motion is partially addressed through the use of a
headset or helmet that is assumed to be rigid relative to the skull.
However, the headset can slip when a person is moving vigorously
on a motion capture stage or in a virtual reality game. More
fundamentally, on some people even the skin on the sides and top
of the head moves during extreme facial expressions, resulting
in the headset shifting slightly. Accurate conveyance of facial
deformation is important for conveying emotions, so a better
solution to this problem is desired. In this paper, we observe
that although every point on the face is potentially moving, each
tracked point or vertex returns to a neutral or “rest” position
frequently as the responsible muscles relax. When viewed from
the reference frame of the skull, the histograms of point positions
over time should therefore show a concentrated mode at this rest
position. On the other hand, the mode is obscured or destroyed
when tracked points are viewed in a coordinate frame that is
corrupted by the overall rigid motion of the head. Thus, we
seek a smooth sequence of rigid transforms that cause the vertex
motion histograms to reveal clear modes. To solve this challenging
optimization problem, we use a coarse-to-fine strategy in which
smoothness is guaranteed by the parameterization of the solution.
We validate the results on both professionally created synthetic
animations in which the ground truth is known, and on dense 4D
computer vision capture of real humans. The results are clearly
superior to alternative approaches such as assuming the existence
of stationary points on the skin, or using rigid iterated closest
points.

Index Terms—computer vision, face tracking, avatars, anima-
tion

I. INTRODUCTION

Motion capture (mocap) is widely used in movies and games
and may become ubiquitous if anticipated online social plat-
forms are realized. A fundamental task in these applications
is to transfer the performance to the virtual avatar. In some
cases it is sufficient to simply reproduce the movement of the
user or actor as accurately as possible and no analysis of
the facial expression is needed. In other cases, however, the
actor’s performance must be transferred to a fantasy character,
or the user may wish to take on the appearance of a warrior,
princess, or alien.

Fig. 1: A high-level view of constructing an avatar model,
showing the role of stabilization.

The most common approach to this expression cloning or
performance transfer problem [1] is to represent the original
performance using a low-dimensional set of parameters and
drive the avatar with these same parameters. Typically the pa-
rameterization is in terms of approximate muscle movements
inspired by the Facial Action Coding System (FACS) [2], [3].
In the simplest case, the approximate muscle movements form
a linear basis, and the corresponding muscle activations at
each frame can be obtained by solving a small linear system
[4]. These solved parameters can then be used to drive an
avatar model with arbitrary geometry provided it is similarly
parameterized.

A small but crucial problem in the construction and use of
such avatars is the stabilization problem: motion due to facial
expressions must be isolated from motion due to overall head
movement. Failure to fully solve this problem results in expres-
sion parameters that are corrupted by head movement, with the
result that moving the head may incorrectly cause the facial
expression to change. A simplified view of how stabilization is
used is shown in Fig. 1. It should be noted that, depending on
the particular pipelines involved, the stabilization problem can
occur in both the avatar construction process and in driving
the final avatar. See [5], [6] for recent approaches to the more
general problem area.

An evident solution to this problem is to identify three or
more relatively rigid points on the face, such as the eye corners
and tip of the nose, and compute the rigid transform from these
points. Alternately, the motion of a tightly attached headset or

0 100 200 300 400 500 600
5.5

6.0

6.5

7.0

7.5

8.0

8.5

vtx 281 - innerbrow2-y

0 100 200 300 400 500 600

21.6

21.8

22.0

22.2

vtx 281 - innerbrow2-y

Fig. 2: Movement of the y-coordinate of vertex on the in-
ner brow in a 405 frame artist-created animation (left), and
movement of the same vertex with the head motion removed
(right). The y-coordinate on the right corresponds to raising
the eyebrow, but the signal in the left plot also contains the
overall head motion (note differing scales). In each plot the
movement of the vertex is shown in black, while the blue curve
is a histogram of the y values. The histogram is rotated 90
degrees to align with the y-movement function. Please enlarge
figures to see details.

helmet can be used to approximate the rigid movement of the
skull. However, these solutions are only approximate. Thick
hair makes it difficult to tightly attach the headset, and in any
case it may move during vigorous acting or gameplay. More
fundamentally, on some people it is difficult to find any visible
points on the skin that do not move during facial expressions.
For example, forcefully raising the eyebrows often causes the
tip of the nose to move slightly, and even results in skin on
the top of the head moving on some people.

While the resulting error is quantitatively small, it is sub-
jectively quite important–consider that the difference in facial
geometry between the expressions of “calm” and “contempt”
may be very small, perhaps on the order of a millimeter.
Conveying the correct emotion is important both for acting
in movies and games, and for social interaction in virtual
online spaces. As a result, manual correction of transferred
performances is frequently required in high-quality entertain-
ment applications, while uncorrected errors contribute to the
“creepy” character of some real-time avatars. Further discus-
sion of existing approaches is provided in Section II.

Our approach to stabilization starts from the hypothesis that
points on the face are close to a “rest” position more frequently
than to any other single position. The idea is that muscles
contract to produce a variety of facial expressions, but then
relax, returning to a common rest shape. As a consequence,
the histogram of positions of a particular point tracked over
time should show a clear approximate mode corresponding to
the rest position. On the other hand this statement is only true
when viewed from the coordinate frame of the skull – in the
world coordinate system the histogram of point positions also
has contributions from the overall head and body motion.

Since the ground-truth skull motion is not easily obtained,
we explored this hypothesis by examining professionally au-
thored facial animations. In this synthetic case, the head’s rigid
frame is explicitly animated, and zeroing this rigid animation
leaves expressions that are moving relative to a stabilized

head. We found that some vertices show an approximate mode
corresponding to the rest pose Fig. 2. Other vertices do not
show a clear mode, however when all vertices on the face
region are considered a very clear mode is visible (see Fig. 5
in Section IV). Further, the addition of even small amounts of
rigid rotation destroys the mode (Fig. 5).

Consequently, our stabilization algorithm seeks to find a
series of rigid transforms Mi ∈ SE(3) that, when applied to
the reconstructed moving ahead, recover a sharp mode in the
histogram of positions-over-time of many points in the face
region. This is a challenging optimization problem for several
reasons: 1) recovering the mode involves a non-convex loss
and the problem has multiple optima (for example, a poor
solution is to hold several points on the chin stable), and 2)
at some times during a facial performance every point on the
face may be moving.

Our mode pursuit algorithm solves this problem in a coarse-
to-fine manner: Starting from plausible initialization using an
existing algorithm such as Iterated Closest Point (ICP), we find
a rigid transform at every frame that causes as many vertices as
possible to approximately align with their rest position across
time. The allowable tolerance in the approximate alignment is
then reduced and the process is repeated. See Section III-A.

Optimization of this objective is not enough, however, since
there may be temporal samples (frames) for which every
point on the face is moving. The rigid motion of the head is
slow relative to facial deformation (for example, by viewing
video frame-by-frame we know that the mouth can move
from fully closed to fully open in 1/30 sec.), so a smooth
rigid motion is preferred. We enforce it by parameterizing the
solution in terms of a dual-quaternion spline (Section III-B).
The stabilization process is subtractive in the sense that the
estimated rigid motion is removed from the measured motion.
Subtracting a smoothed modeled trajectory from the original
motion implements a high-pass filter. For this reason, the
optimization includes a term penalizing vertex motion. In
the absence of vertices close to their rest pose modes, this
minimizes high frequency residuals. We originally considered
adding a term favoring smoothness on the solved rigid mo-
tion parameters (the dual quaternion curves), but found that
penalizing vertex velocity is sufficient for good results. The
resulting optimization is solved using a coarse-to-fine scheme.
The algorithm is described in more detail in Section III.

II. RELATED WORK

As mentioned earlier, the obvious stabilization approach of
identifying the rigid transform from a triple of points usually
does not work because it is difficult to find three points that
are truly rigid with respect to the skull. This can be partially
addressed by averaging over a larger number of points, such as
selected regions on the upper face (avoiding the jaw), with the
hope that errors at individual points average out. In the case
where correspondences across frames are known (true in our
case), Procrustes alignment has been applied for this purpose
[7]. In this procedure the translation is first trivially handled
by removing the mean of the tracked points. The rotation is

then obtained as the solution to the problem min ‖A−BQ‖2F
where in the stabilization problem A,B contain the points
from two frames to be aligned and Q ∈ SO(3). The solution
Q = UVT is obtained from the SVD of BTA [8]. See [9]
for further variants.

Iterated Closest Point (ICP) algorithms have been used in
the case where correspondences across frames are not known
[10]. This family of algorithms alternates between assigning
correspondences using closest points, and solving a rigid
alignment (Procrustes) problem given these correspondences.
Classic algorithms minimizing squared error perform poorly
when there are outliers in the data; this has been addressed
with the use of robust (e.g. `1 or Huber) loss functions.
Bouaziz et al. [11] introduced an optimization algorithm that
achieves a highly robust “near `0” loss, providing superior
results.

The only published work that specifically addresses our
problem is [12], [13]. In Beeler and Bradley [12] an underlying
skull is first explicitly estimated by morphing a template skull
to fit a given neutral expression scan assuming expected flesh
thicknesses. Then, a nonlinear optimization solves for the skull
position that approximately preserves the volume of the flesh
between the skin and skull. This approach was compared
to manual stabilization and worked well. A drawback of
the method is that it is rather complex to implement. Also,
the several approximations involved (estimates of unknown
flesh thickness and skull shape, and the approximation of
volume preservation) do not guarantee that the results are
always correct. Fyffe et al. [13] approach the stabilization
problem by assuming that, following an initial Procrustes
alignment, the rigid rotations are small and hence can be
linearly approximated as a weighted sum of the Lie algebra
rotation generators. An iterative algorithm removes motion that
is better explained as linearized rotation than as deformation,
and a final rotation at each frame is computated as the best
rigid alignment of the resulting and original meshes.

Another approach to the stabilization problem is to incorpo-
rate estimation of head orientation into the optimization that
solves for the facial parameters. In the simplest case of a
linear “blendshape” model, the parameters can be obtained for
a stabilized head as a constrained linear system solved with
quadratic programming, whereas incorporating stabilization
requires a nonlinear solve. A more fundamental problem is
that if the parametric model does not exactly fit the performer,
the fitting error will be distributed in an unknown way between
the expression and head motion parameters. In fact it is
common that the model does not exactly match the performer
even if it is based on a prior scan of the same person. Several
algorithms address this with schemes that adapt an existing
model to better fit the face shape being tracked [14]–[16]. On
the other hand, the principle used in our stabilization approach
does not reference the parametric model and so does not suffer
from this problem.

1.0 0.5 0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

|x
|1/

p

|x|1/p

|x|1/100

|x|1/10

|x|
|x|

1.0 0.5 0.0 0.5 1.0
x

4

3

2

1

0

1

2

3

4

1/
p|

x|
1/

p
1

1/p|x|1/p 1

p = 1/100
p = 1/10
p = 1/2
p = 1

Fig. 3: Family of penalties corresponding to the p-norm (left)
and derivative (right).

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

(x
)

(x)

(x/2.0)
(x/1.0)
(x/0.2)

2 1 0 1 2
x

4

3

2

1

0

1

2

3

4

(x
)

(x)
(x/2.0)
(x/1.0)
(x/0.2)

Fig. 4: Our custom penalty function ψ with n = 2 has an
adjustable width or “tolerance” (left); derivative (right).

.

III. METHOD

Our solution to the stabilization problem requires a smooth
set of rigid transforms that, when applied to a “4D tracked”
mesh, will cause the motion of many vertices to have an
approximate but clear mode. While our 4D tracking system
is proprietary, the stabilization algorithm presented here does
not rely on details of the tracking and could be used with
published algorithms [17]–[19]; see [5] for one recent survey.

A. Mode pursuit

Recall that the mean is the central value c that minimizes
the sum of squared errors argminc

∑
(c − xk)

2, whereas
the median is the value that minimizes the sum of absolute
errors, argminc

∑
|c − xk|. These measures of the distance

between c, xk are generalized to a continuous family in the
p−norm (or `p-norm) ‖d‖p = (

∑
|di|p)

1
p where ‖d‖p is the

multidimensional p-distance and minimizing `2, `1 reduce to
the mean and median respectively. Similarly, the “`0 norm”
corresponds to the mode. However, the `p norm expression
is not a true norm for p < 1, and `0 should be understood
as limp→0 `p. Fig. 3 (left) plots the penalty |x|p for several
values of p approaching zero. While the median corresponds
to a loss in which the cost increases linearly with distance,
as p→ 0 any discrepancy is equally penalized. Thus the “`0”
penalty is conceptually an approach to finding the mode.

While the fact that `p, p < 1 is not a true norm is not
crucial for our purpose, there are several other problems with
directly applying this idea. Optimization requires the derivative
of the penalty function, and as shown in Fig. 3 (right) the
derivative is poorly behaved for p near zero. Further, finding

the minimum `0 norm is both a combinatorial search problem,
and is ill-posed: a small amount of noise change the solution
completely.

Our mode pursuit algorithm addresses these issues with the
`0 penalty using two ideas. First, we adopt a penalty that
is blind to some amount of noise. Through experimentation
we designed a symmetric sigmoidal penalty composed from a
piecewise polynomial

ψeven n(x) =

(2x)n

2 if |x| ≤ 0.5;

1− (2x−2)n
2 if 0.5 < |x| ≤ 1;

1 otherwise

ψodd n(x) =

(2x)n

2 if |x| ≤ 0.5;

1 + (2x−2)n
2 if 0.5 < |x| ≤ 1;

1 otherwise
(1)

(see Fig. 4); the particular polynomial function has been used
as for a smooth fade function in computer graphics [20].
This function evaluates the absolute difference between the
rigidly transformed rest pose mesh vertex coordinates and
the measured coordinates. It gives the same penalty to large
outliers while allowing a certain amount of deviation from the
mode to be unpenalized. The derivative of the function is well
behaved (Fig. 4 (right)).

Second, the solution is “steered” in a coarse-to-fine manner,
starting with an approximate initialization and then gradually
reducing the width of ψ to approximate the `0 norm. Iterations
are stopped at a width that allows the expected amount of
normal noise. In our experiments we used the schedule of 0.8,
0.4, 0.2, 0.1, and 0.05 cm for positions and 0.2, 0.1, 0.05,
0.025, 0.0125 cm/frame for velocities

B. Motion representation

Kavan [21] has shown that dual-quaternion have desir-
able properties to model sequences of rigid transformations,
namely: constant speed, shortest path and coordinate system
invariance. They also demonstrate empirically that an ap-
proximate algorithm, dual-quaternion linear blending (DLB),
preserves the shortest path and coordinate system invariance
properties. The constant speed property, which means that the
rotation angle varies linearly with the time parameter, is useful
for artistic control but has no incidence on data fitting. DLB
is easy to implement with high throughput tensor processing
software like Pytorch [22].

DLB(w;q1, ...,qn) =
w1q1 + ...+ wnqn

‖w1q1 + ...+ wnqn‖

The blending weights are computed with a B-spline basis,
resulting in spline dual-quaternion linear blending (SDLB):

SDLB(qi, Bi, x) = normalize

(∑
i

qiBi,p(x)

)
where the basis vectors are computed with DeBoor’s algo-

rithm [23].

Bi,0(x) :=

{
1 if ti ≤ x < ti+1

0 otherwise

Bi,p(x) :=
x− ti
ti+p − ti

Bi,p−1(x) +
ti+p+1 − x
ti+p+1 − ti+1

Bi+1,p−1(x).

The rigid transform rf at every frame is represented as (2)

rf (qi) = SDLB(qi, Bi, xf) (2)

where i ∈ {1, . . . , ndqs} with ndqs the number of control dual-
quaternions and xf denotes the spline parameter corresponding
to frame f .

We refine the dual-quaternion curve in coarse to fine fash-
ion using the shape preserving midpoint refinement [23]. In
practice, the optimal initial number of control points depends
on the quality of the initialization which is discussed in
Section III-D. The final number of control points parameterizes
the smoothness of the solution.

C. Optimization

Let Sf be the stabilized mesh at frame f as a function of
the control dual quaternions qi using (2)

Sf (qi) = rf (qi)Xfrf (qi) (3)

where Xf denotes the tracked mesh at frame f . Our overall
optimization problem is then

argmin
qi

∑
f∈frames

3∑
c

ψpos (|Sf (qi)−Xr|c)+ψvel

(
|Ṡf (qi)|c

)
(4)

Xr is the static rest mesh, Ṡf is the stabilized mesh vertex
velocity computed using central finite differences, | · |c denotes
the distance in the c-th coordinate (x,y, or z), and ψpos and
ψvel are penalty function for vertex position and velocity.

The energy minimization problem (4) is implemented with
Pytorch as two main functions: a forward function comput-
ing the stabilized mesh coordinates from the dual-quaternion
parameters (3) and the penalty function implementing ψ per
(1). Like other automatic gradient libraries Pytorch is flow
graph based. The graph is built on-the-fly by evaluating
functions in a model class forward method. Our algorithm
model builds a graph with the dual-quaternion control vertices
as leaf variables. Leaf variables are the parameters optimized
by Pytorch to minimize the loss between the forward method
output and the expected values. The tracked coordinates are
input to the forward method. The stabilized coordinates and
stabilized velocities are the output. The position loss function
is evaluated on the absolute difference between the stabilized
coordinates and static rest pose coordinates. Stabilized vertex
velocities are estimated with a convolution filter with 7 central
difference coefficients (accuracy O(h6)). Absolute velocities
are evaluated to penalize any motion of the stabilized mesh.
The energy is minimized using the Pytorch L-BFGS optimizer.
In our experiments, the optimizer stops at a prescribed number
of iterations rather than reaching its internal convergence
criterion. The optimization is restarted multiple times when

1.5 1.0 0.5 0.0 0.5 1.0

no rigid motion

1.5 1.0 0.5 0.0 0.5 1.0

corruption +/- 1 degree

1.5 1.0 0.5 0.0 0.5 1.0 1.5

corruption +/- 3 degrees

Fig. 5: Effect of adding rigid motion on the movement
histogram. From a 405-frame artist-created animation, with
the head motion removed: (Left) histogram of the y (ver-
tical) movement of 832 face vertices from the face region
concatenated into a single signal by aligning their means. The
combined signal has a length of 405×832 = 336960. (Middle)
the histogram resulting after ±1 degree of random rigid head
rotation is added every 5 frames, with spline interpolation of
the rotation in between. (Right) result after adding ±3 degrees
of random rotation.

reducing the width of ψ and when refining the B-spline curve
(i.e. this is a numerical continuation scheme).

Benchmarks are run on a Titan-V GPU. The implementation
of the forward and loss functions is vectorized but not opti-
mized to fully utilize the GPU. The runtime depends mostly
on the number of iteration and very little on the problem
size. It varies by large amount between repeated experiment
(+/- 10 seconds). With our datasets GPU processing is not
a bottleneck. The fixed costs inside Pytorch for gradient
estimation dominate the runtime. This indicates there is a large
potential for optimization, even though the runtime are already
reasonable. Sample timing results are shown in Table I.

D. Initialization

The Initialization method depends on the application. If the
head is restrained by some means like a head rest, the guess
solution should be initialized to identity transform. For free
head motion, the solution should be initialized with previous
simple methods such as three-point alignment or ICP.

IV. RESULTS

A. Performance on “ground truth” animations

We validated the approach using two convincing synthetic
“semi-professional” facial animations (Figs. 6) for which the
ground-truth head motion is provided by the animator (see
Acknowledgments). Figs. 2, 5 validate the hypothesis that
vertex motion exhibits a mode when viewed in the skull-
rigid frame. On an animation with 651 of frames of rapid
speech and head movement, using our algorithm to align the
rigid-removed animation to the original animation, based on
only vertices in the face region, resulted in a median error
of 0.01cm and mean error of 0.03cm between the true and
aligned vertices assuming the model has a standard inter-ocular
distance of about 6cm. The three-point stabilization median
error is 235% higher and the mean error is 79% higher.

B. Performance on captured facial performances

Conveying results on real performances is difficult in a
paper format, both because of the temporal nature of the

TABLE I: Timings

Sequence # Frames # Vertices Array size Iters Time (secs.)
Eyebrow 63 2466 466074 12 105

24 198
Jaw slide 96 2466 710208 12 109

24 193
Synthetic 651 1185 2314305 12 126

24 261

problem and the lack of a quantitative ground truth (in standard
mocap or video face reconstruction the true motion of the
skull is unknown). Please see the accompanying video to
fully assess the results. The video compares the results three-
point stabilization, an ICP method, and our algorithm. The
algorithms are shown running on short performances of the
sort that might be used to build primitive expressions for
an avatar. We selected several sequences that highlight the
challenges of stabilization.

For the three-point stabilization, we selected the corners of
the eyes, and a point slightly below the tip of the nose that
we observed to be relatively stable on the particular individual.
The ICP algorithm considers only the forehead and nose bridge
geometry, selected with the mask shown in Fig. 7. Our ICP
algorithm also includes a temporal noise filtering component.

V. DISCUSSION AND CONCLUSION

Our problem is different from, but share some concepts
with, the problems of independent component analysis (ICA)
and compressive sensing. In the classic form of ICA, several
instances of a class of signals (e.g. several audio signals) are
linearly combined. The central limit theorem effect of this lin-
ear combination causes the probability density of the mixture
to be more Gaussian. Thus ICA seeks an un-mixing matrix
that makes the recovered signals as non-Gaussian as possible.
In our case, histograms with a clear mode are similarly non-
Gaussian, however the “mixture” involves dissimilar signals
(rigid transforms and expressions), and the rigid rotation is an
operator on the expression. The classic form of compressed
sensing seeks a solution to an under-determined linear system
in which the solution is as sparse as possible. While an
`1 cost on the solution is typically used as a surrogate for
sparsity, algorithms that seek a sparse “`0” solution [11]
involve considerations similar to the optimization presented
in Section III

In this paper we introduced a solution to the difficult
problem of stabilizing facial motion capture. It proceeds from
a simple and easily stated principle that has not previously
appeared in the literature. Although the optimization approach
requires care, it is easily implemented and our complete
implementation is roughly 500 lines of Pytorch. Limitations
of this work include the fact that it is oriented toward high-
quality offline stabilization for avatar construction and may not
be suitable for stabilization of real-time mocap. As with most
ICP and related algorithms, careful initialization is needed.
We have also observed it failing to stabilize a few “extreme”
expressions such as Fig. 8. Nevertheless it generally works
well, provides a clear improvement over existing approaches to

(a) (b)

Fig. 6: Images from some sequences used in the evaluation. (a) Synthetic facial animation used to compute ground truth error.
(b) Frame from a 4D-tracked human performance, showing the asymmetric jaw-slide expression that is difficult to stabilize.

Fig. 7: Our baseline ICP algorithm is applied only to vertices
in the masked area.

Fig. 8: With default settings the stabilization fails on this
extreme pose. Changing the penalty width from the default
0.5mm to 1mm results in adequate results on this case, but
we prefer to not manually adjust this parameter.

rigid alignment, and is considerably simpler than the previous
published approach to this problem.

ACKNOWLEDGMENTS

The model used in the 405-frame animation was obtained
from Prof. Hiroki Itokazu, California State University. The
model for the “Strangelove” 651-frame animated sequence is
from [24]. Animations were provided by Nickson Fong and
Egg Story Creative Productions. We acknowledge valuable
feedback from Binh Le and Javier von der Pahlen.

REFERENCES

[1] J. Noh and U. Neumann, “Expression cloning,” in SIGGRAPH 2001,
Computer Graphics Proc., E. Fiume, Ed. ACM, 2001, pp. 277–288.

[2] P. Ekman and W. Friesen, Manual for Facial Action Coding System.
Palo Alto, CA: Consulting Psychologists Press Inc., 1978.

[3] M. Sagar and R. Grossman, “Facial performance capture and expressive
translation for King Kong,” in SIGGRAPH 2006 Sketches, 2006.

[4] J. Lewis, K. Anjyo, T. Rhee, M. Zhang, F. Pighin, and Z. Deng, “Practice
and theory of blendshape facial models,” in Eurographics, 2014.

[5] M. Zollhöfer, J. Thies, P. Garrido, D. Bradley, T. Beeler, P. Pérez,
M. Stamminger, M. Nießner, and C. Theobalt, “State of the art on
monocular 3d face reconstruction, tracking, and applications,” Computer
Graphics Forum, vol. 37, no. 2, pp. 523–550.

[6] A. Smith, S. Pohle, W.-C. Ma, C. Ma, X.-C. Wu, Y. Chen, E. Danvoye,
J. Jimenez, S. Patel, M. Sanders, and C. A. Wilson, “Emotion challenge:
Building a new photoreal facial performance pipeline for games,” in
DigiPro. New York, NY, USA: ACM, 2017, pp. 8:1–8:2.

[7] D. Vlasic, M. Brand, H. Pfister, and J. Popović, “Face transfer with
multilinear models,” in ACM Transactions on Graphics (TOG), vol. 24.
New York, NY, USA: ACM Press, 2005, pp. 426–433.

[8] G. Golub and C. Van Loan, Matrix Computation, third edition. Balti-
more and London: The John Hopkins University Press, 1996.

[9] J. Gower and G. Dijksterhuis, Procrustes Problems. OUP Oxford, 2004.
[10] T. Weise, H. Li, L. V. Gool, and M. Pauly, “Face/off: Live facial

puppetry,” in Proceedings of the 2009 ACM SIGGRAPH/Eurographics
Symposium on Computer animation (Proc. SCA’09). ETH Zurich:
Eurographics Association, August 2009.

[11] S. Bouaziz, A. Tagliasacchi, and M. Pauly, “Sparse iterative closest
point,” in Eurographics/ACMSIGGRAPH Symposium on Geometry Pro-
cessing, ser. SGP ’13, 2013, pp. 113–123.

[12] T. Beeler and D. Bradley, “Rigid stabilization of facial expressions,”
ACM Trans. Graph., vol. 33, no. 4, pp. 44:1–44:9, Jul. 2014.

[13] G. Fyffe, K. Nagano, L. Huynh, S. Saito, J. Busch, A. Jones, H. Li,
and P. Debevec, “Multi-View Stereo on Consistent Face Topology,”
Computer Graphics Forum, vol. 36, no. 2, pp. 295–309, 2017.

[14] H. Li, J. Yu, Y. Ye, and C. Bregler, “Realtime facial animation with
on-the-fly correctives,” ACM Transactions on Graphics, vol. 32, no. 4,
pp. 42:1–42:10, July 2013.

[15] S. Bouaziz, Y. Wang, and M. Pauly, “Online modeling for realtime facial
animation,” ACM Trans. Graph., vol. 32, no. 4, pp. 40:1–40:10, 2013.

[16] K. S. Bhat, R. Goldenthal, Y. Ye, R. Mallet, and M. Koperwas, “High
fidelity facial animation capture and retargeting with contours,” in
Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion (SCA ’13). New York, NY, USA: ACM, 2013, pp. 7–14.

[17] A. H. Bermano, D. Bradley, T. Beeler, F. Zund, D. Nowrouzezahrai,
I. Baran, O. Sorkine-Hornung, H. Pfister, R. W. Sumner, B. Bickel, and
M. Gross, “Facial performance enhancement using dynamic shape space
analysis,” ACM Trans. Graph., vol. 33, no. 2, pp. 13:1–13:12, Apr. 2014.

[18] G. Fyffe, T. Hawkins, C. Watts, W. Ma, and P. E. Debevec, “Compre-
hensive facial performance capture,” Comput. Graph. Forum, vol. 30,
no. 2, pp. 425–434, 2011.

[19] G. Fyffe, A. Jones, O. Alexander, R. Ichikari, P. Graham, K. Nagano,
J. Busch, and P. Debevec, “Driving high-resolution facial blendshapes
with video performance capture,” in ACM SIGGRAPH 2013 Talks.
ACM, 2013, p. 33.

[20] G. Levin, http://www.flong.com/texts/code/shapers poly.
[21] L. Kavan, S. Collins, C. O’Sullivan, and J. Zara, “Dual quaternions

for rigid transformation blending,” Trinity College Dublin, Tech. Rep.
TCD-CS-2006-46, 2006.

[22] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS-W, 2017.

[23] C. De Boor, “A practical guide to splines, revised edition, vol. 27 of
applied mathematical sciences,” Mechanical Sciences, year, 2001.

[24] J. Osipa, Stop Staring: Facial Modeling and Animation Done Right, 2nd
Ed. Sybex, 2007.

	Introduction
	Related Work
	Method
	Mode pursuit
	Motion representation
	Optimization
	Initialization

	Results
	Performance on ``ground truth'' animations
	Performance on captured facial performances

	Discussion and Conclusion
	References

