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A B S T R A C T  

An automated method of synchronizing facial animation to 
recorded speech is described. In this method, a common 
speech synthesis method (linear prediction) is adapted to pro- 
vide simple and accurate phoneme recognition. The recognized 
phonemes are then associated with mouth positions to provide 
keyframes for computer animation of speech using a 
parametric model of the human face. 

The linear prediction software, once implemented, can also be 
used for speech resynthesis. The synthesis retains intelligibil- 
ity and natural speech rhythm while achieving a "synthetic 
realism" consistent with computer animation. Speech syn- 
thesis also enables certain useful manipulations for the purpose 
of computer character animation. 
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RESUME 

Cette prdsentation ddcrit une m~thode automatique pour la 
synchronisation d'animation faeiales avee un texte prd- 
enregistrd. Dans cette approche, on a adaptd unc mdthode 
courante ca synthdse de la parole (prddiction lindaire) g la 
reconnaissance des phondmes de facon simple et prdeise. Les 
phondmes identifids sont ensuite associds g des positions de 
bouche qui seront elles m6me utilisdes comme images-clefs dans 
le proeessus d'animation par ordinatenr d'un moddle de visage 
humain paramdtrd. 

Le Iogiciel de prddiction lineaire, une fois implementd, pent 
aussi 6tre utilisd pour la resynthdse de la parole. La synthdse 
conserve I'intelligibilitd, et le rythmc "naturel" du langage 
ainsi qu'un rdalisme synthdtique adaptd aux techniques 
d'animation par ordinateur. La synthdse de la parole permet 
par ailleur des manipulations effieaces dans le eontexte de 
l'animation de personnages par ordinateur. 
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Introduct ion 

While several viable computer face models have been 
developed [g][8][2], animations employing these models to 
date have relied in part on non-automated techniques 
such as rotoscoping. Ideally, an "artificially expressive" 
front end to the computer face model would intelligently 
translate an animation script into a sequence of facial 
movements and expressions which enact the script, while 
giving the animator a conceptual model with which to 
control the acting process. 

This paper considers a more limited problem: a tech- 
nique is described for automatically identifying mouth 
positions corresponding to a given speech segment ('lip- 
synch'). The approach is to obtain a representation of 
the speech as a timed phoneme sequence (phonetic 
script), and then to establish a phoneme to mouth posi- 
tion correspondence in order to drive a parametric face 
model. 

The facial animation system described by Pearce et. 
al. [10] includes one approach to synchronized speech. In 
their approach, the phonetic script is specified directly by 
the animator. The phonetic script is also input to a 
phoneme-to-speech synthesizer, achieving synchronized 
speech. This approach is appropriate when the desired 
speech is specified in a textual rather than auditory form, 
and the quality of rule-based synthetic speech is accept- 
able to the purpose. The drawback of this approach is 
that  it is difficult to achieve natural rhythm and articula- 
tion when the speech timing and pitch is defined in a 
script or derived by a rule-based text-t~speech syn- 
thesizer. Typically the prosody quality can be improved 
somewhat by adding information such as pitch and loud- 
ness indications to the script. 

An alternative approach is to obtain the desired 
phoneme sequence by analyzing digitized speech. As 
Pearce et. al. note, current speech recognition technology 
is somewhat error prone, and in fact most systems are 
capable only of identifying isolated words. Our problem 
is considerably simpler than that  of recognizing speech, 
however. Speech recognition involves transforming the 
speech into a representation in which the speech formant 
frequencies are emphasized and the pitch information is 
largely removed, and then parsing this representation to 
identify words. It is the latter task which is difficult; the 
former (acoustic preprocessing) step is generally quite 
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effective and is all that is required for deriving a phonetic 
script. 

The analysis approach used here adopts linear pred- 
iction, a parametric speech synthesis model, to obtain 
speech parameters which can be used to identify 
phonemes from a limited set corresponding to visually 
distinctive mouth positions. 

L i n e a r  P r e d i e t l o n  S p e e c h  M o d e l  

Linear prediction models a speech signal 8 t as  a 

broadband excitation signal x, input to a linear autore- 
gressive filter (a weighted sum of the input and past 
output of the filter): 

P 
st = tex t  + ~ ak st-k (1) 

k = l  

This is an abstracted but fairly accurate model of speech 
production, in which the filter models the vocal tract 
(mouth, tongue, and lip positions) and the excitation sig- 
nal approximates the acoustic signal produced by the 
vocal cords. It is also a useful model, since both human 
speech production and perception likewise separate pitch 
(determined by the vocal cord tension) from phonetic 
information (determined by the vocal tract filtering). 
This can be illustrated by sounding a fixed vowel while 
varying the pitch or vice versa: the mouth position and 
vowel are both entirely independent of pitch. 

In speech resynthesis the excitation signal x t is 
approximated as either a pulse train, resulting in pitched 
vowel sounds, or an uncorrelated noise, resulting in either 
consonants or whispered vowels depending on the filter. 
The filter coefficients a k vary over time but are constant 
during a short interval (analysis frame) in which the 
vocal tract shape is assumed constant. The analysis 
frame time should be fast enough to track perceptible 
speech events but somewhat longer than the voice pitch 
period to permit deconvolution of the pitch information. 
An analysis frame time of about 15-20 msec. satisfies 

these conditions. This corresponds to 50-65 
frames/second, suggesting that sampling the mouth 
movement at a standard animation rate (24 or 30 
frames/second) may not be fast enough for sore? speech 
events (c.f. Fig. 1). 

For the purpose of synchronized speech animation it 
is convenient to choose the analysis frame rate as twice 
the film or video frame playback rate. In this case the 
frame rate can be reduced to the desired animation rate 
with a simple low-pass filter. An alternative is to gen- 
erate the animation at the higher frame rate (e.g. 60 
frames/second) and apply the filter across frames in the 
generated animation rather than across analysis frames. 
This supersampling approach reduces the temporal alias- 
ing resulting from quantizing facial movement keyframes 
to the animation frame rate, which has been a source of 
difficulty in previous work [9]. 

S o l u t i o n  A l g o r i t h m  

Given a frame of digitized speech, the coefficients a k 
are determined by minimizing the squared error between 
the actual and predicted speech over some number of 
samples. There are a number of formulations of least- 
squares linear prediction; a simple derivation which 
results in the autocorrelation method [7] of linear predic- 
tion is given here. This derivation views the speech sig- 
nal as a random process which has stationary statistics 
over the analysis frame time. The expected squared esti- 
mation error 

is minimized by setting 

0E 
= 0  

O a  k 

(one proof that this does determine a minimum involves 
rewriting (2) as a quadratic form), obtaining 

Fig. 1: Speech spectrogram over one 
second with the pitch information 
removed. The three primary vowel for- 
taunts are visible as dark bands. While 
vowels typically extend over a number 
of animation frames, transition areas are 
difficult to track using a standard ani- 
mation frame rate. 
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E st st_y - (azt st_i + ~ ak st_k st_y ) = 0 
k = l  

for l < j  < P .  Since the excitation at time t is uncorre- 
lated with the previous speech signal, the expectation of 
the product az  t st_ 1 is zero. Also, the expectation of 
terms st_yst_ ~ is the ( j - k ) t h  value of the autocorrela- 
tion function. These substitutions result in a system 

P 
E a ~ R ( j - k )  -~ R ( j )  (3) 

k = l  

(in matrix form) 

R (0) R (1) 
R (1) R 10) 

• ' '  R ( P - 1 ) "  

• "" R ( P - 2 )  

• • • R (o) 

al  J R ( I )  
a2 = ]R(2)  

ap L R (Pl 
which can be solved for a,~ given the analysis frame auto- 
correlation function R .  The latter can be estimated 
directly from the speech signal using [11] 

1 L-~-! 
R (r) ~.~ T t~o st st +" for 0 < r <  P 

where L is the length of the analysis frame in samples. 
Since the autocorrelation of a stationary process is an 
even function, R ( j - k )  is a symmetric Toeplitz matrix 
(having equal elements along the diagonals), permitting 
the use of efficient algorithms available for the inversion 
of these matrices such as the Levinson recursion [4]. 

There are a number of other formulations of linear 
prediction, and the choice of a particular approach 
depends largely on one's mathematical preferences. The 
references [11][13] provide speech-oriented overviews of 
the autoeorrelation and another (covariance) formulation, 
while [7] is an exhaustive (and interesting) treatment of 
the subject. Many solution algorithms for (3) have also 
been published. A Fortran implementation of the Levin- 
son algorithm is given in [7] and a version of this routine 
(auto)  is included in the IEEE Signal Processing Library 
[1]. The most efficient solution is obtained with the Dur- 
bin algorithm, which makes use of the fact that the 

. 5 : :  ' " t~ .  " ~ ": '  ~::~ ~:~-('~'~'.: ':.' . ~ i~ ' , '9" ;  .:,::='.. : . .  • • : ~g  

hat f,v 

hoot hug 

right-hand vector in (3) is composed of the same data as 
the matrix. This algorithm is described in [11] and is 
presented as a Pascal algorithm in [13]. Alternatively, (3) 
can be solved by a standard symmetric or general matrix 
inversion routine at some extra computational cost. We 
note in passing that linear prediction is a special case of 
Wiener filtering, which has other computer graphics 
applications such as stochastic synthesis [6]. 

S y n c h r o n i z e d  S p e e c h  

The coefficients a k resulting from the linear predic- 
tion analysis describe the short term speech spectrum 
with the pitch information convolved out. An analyzed 
speech frame is classified using the Euclidean distance of 
its short-term spectrum from the spectra of the reference 
phonemes. The spectrum is obtained by evaluating the 
magnitude of 

H ( z )  = p 
1 -  ~ a/~z - t  (4) 

k = l  

(the z-transform of (1)) at N points on the complex z- 
plane half unit circle with z-~e -y~k/N. In this case the 
denominator in (4) is effectively a discrete Fourier 
transform of the negated, zero-extended coefficient 
sequence 1,-al,-a2...,-ap,O,O , .... , of length 2N, permit- 
ting implementation by FFT. A resolution of e.g. N----32 
appears to be sufficient since the linear prediction spectra 
are smooth. Although a more direct identification 
approach would be to compare the coefficients a t to the 
coefficients of the reference phonemes, least-squares 
identification on the coefficients performs poorly and it 
appears that some other norm is required [7]• 

The selection of the reference phonemes involves a 
compromise between robust identification and phonetic 
and visual resolution. Various 'How to Read Lips' books 
and books on cartooning identify visually distinctive 
mouth positions and the corresponding sounds (Fig. 2). 
Previous synchronized speech animation has typically 
used between approximately 10-15 distinct mouth key- 
frames [12][5][2]. Our current reference phoneme set con- 

... , . : : - /  - . . . : .  ~ : ,  . ;  ~ .~  . . ;  . : . ,  

• ~ . . . ~ . .  ' .,: I I  • , . .  ' • • ~. ,  • ~ '  

heed 

hoe 

Fig. 2: Portion of a lipsynch chart with 
vowels indicated by sample words, 
obtained [12] from a popular 'How to 
Read Lips' book. 
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sists of the vowels in the words 
hate, hat, hot, heed, head, hit, hoe, hug, hoot (as pronounced in 
American English), together with the consonants m,s,f. 
While there are more than thirty phonemes in spoken 
English [3] (not counting combination sounds such as 
diphthongs) this reference set includes most of the 
vowels. Our approach to speech synchronization profits 
from the fact that vowels are easily identified with a 
linear prediction speech model, since visually distinctive 
mouth positions correspond to vowels in most cases (Fig. 
2), and consonants are also generally shorter than vowels. 

We have found that very accurate vowel 
identification is possible using the linear prediction 
identification approach with twelve reference phonemes. 
Currently we are using a 20kHz audio sampling rate with 
P ~ 2 4  in (1). The number of coefficients was chosen 
using the rule of thumb [7] of cue pole (conjugate zero 
pair of the denominator polynomial of (4)) per kHz, plus 
several extra coefficients to model the overall spectrum 
shape. Almost all of the semantically important informa- 
tion in speech lies below 4000-5000 Hz, as demonstrated 
by the intelligibility of AM radio, so an audio sample rate 
of 10kHz is sufficient for analysis applications such as lip- 
synch. The higher sample rate allows the speech data to 
be manipulated and resynthesized for a reasonably high 
quality sound track. 

Consonant transitions are an area of theoretical 
difficulty. In some cases, for example in pronouncing a 
stop consonant such as ' t '  at the end of a word, the 
mouth can remain open following aspiration during a 
period of silence leading into the next word. Any purely 
acoustically based lipsynch technique will incorrectly 
cause the mouth to be closed during this period. Another 
difficulty is the nasal 'm', which presents the inverse 
situation where the mouth is closed during sound produc- 
tion. 

The viability of an automated lipsynch method 
depends on the nature and purpose of the facial represen- 
tation. A follow-on to the "Transmission of Presence" 
low-bandwidth teleconferencing project at the MIT Archi- 
tecture Machine Group [12][5] included synchronized 
speech using a simple filter-bank sound categorization 
method. While this method was able to reliably distin- 
guish only about five sounds, it was sufficient to create 
tolerable low-resolution facial animation. Informal exper- 
iments indicate that people (at least those who do not 
read lips) do not easily ascertain the sound corresponding 
to given mouth position (as can be demonstrated by 
attempting to guess the sounds represented in Fig. 2). 
We believe that accurate rhythm in the mouth movement 
is fundamental for lipsynch, while accuracy of mouth 
positioning becomes necessary in close-up views of the 
face. 

Face Model  
The lipsynch system we are developing employs the 

parametric human face model described in [9][8]. This 
model has recently been extended to several full-head ver- 
sions. The parametric modeling approach allows the face 

to be directly and intuitively manipulated via a limited 
and fairly natural set of parameters, bypassing the effort 
involved in modeling or digitizing keyframes in a 
keyframe-based approach. 

The face model parameters relevant to mouth posi- 
tioning and lipsynch include those controlling jaw rota- 
tion, lip opening, raising the upper lip, the lower lip 
' tuck' for the f/v sound, and movement of the corners of 
the mouth. Since the parametric model allows expressive 
and structural parameters to be manipulated and 
animated independently, a computed script including lip- 
synch and other expressive parameters can be applied to 
any available character employing the model. Fig. 3 
shows the face model from the character "T-square", 
while Figs. 4, 5 show the 'F'  and 'hoe' (vowel) positions 
for this face. 

Linear Predict ion Speech Synthes i s  
The linear prediction software, once implemented, 

c,~n also be used to resynthesize the original speech. This 
enables several manipulations which may be useful for 
animation. In most faithful synthesis approach, the 
difference signal (residual) between the original speech 
and the output of the linear prediction filter is used as 
the synthesis excitation signal: 

P 
zt ----st  - ~ ak s t -k  

kffil 

The residual signal approximates an uncorrelated noise 
for consonants and whispered vowels, and approximates a 
pulse train for voiced vowels. The linear prediction 
analysis and the residual together encode most of the 
information in the original speech. The synthesized 
speech is highly intelligible and retains the original 
inflection and rhythm, yet it has a subtle synthetic qual- 
ity which may be appropriate for computer animation. 
Variations of this form of synthesis are commonly used 
for speech compression and the reader has no doubt 
heard examples of it p~'oduced by dedicated linear predic- 
tion chips. 

Fig. 3: Face model for the "T-square" character. 
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Vocoder quality or ' robot '  speech is obtained if the 
excitation signal is a synthetically generated pulse train 
or random sequence. The Levinson and Durbin algo- 
rithms return a per-frame prediction error magnitude 
which is compared with a threshold to d~termine which 
form of excitation to use, e.g. normalized errors greater 
than about 0.3 typically reflect consonants or whispered 
voice. An important  manipulation which is easily possi- 
ble in the ease of synthetic excitation is to speed up or 
slow down the speech. This is accomplished simply by 
accessing the coefficient frames at a faster or slower rate. 
Since the voice pitch is controlled by the excitation, the 
speech rate can be changed without producing a 
("Mickey Mouse") effect. The linear prediction software 
has been implemented under a general purpose Lisp-based 
computer music system [14], so additional sonic manipu- 
lations such as reverberation, gender/age change (spec- 
trum shifting), etc. are directly obtainable. 

E v a l u a t i o n  

Expressive character animation promises to provide 
the human impact which is generally absent in computer 
animation. Automated lipsynch and speech manipulation 
techniques are steps towards this goal. While automated 
lipsynch is necessarily inferior to rotoscoping, it may be 
adequate for many purposes, and is probably preferable 
to the non-rotoscoped manual lipsynch used in cartoon 
animation. It also provides a first pass at the desired 
movement in those cases where manual improvement is 
required. 

The computer aided character animator is fighting a 
strong perceptual effect, however: as the character model 
becomes more realistic, any remaining flaws become 
prominent and sometimes even disturbing. Fully expres- 
sive semi-automated character animation will require not 
only lipsynch but also a means of automatically generat- 
ing characteristic head movements (prosodic nodding, eye 
movements, expressions, etc.) during speech as well. This 
problem may be easier than that  of speech synchroniza- 
tion in one respect, in that  head movement is more likely 
to be atypical than simply wrong, but  in other respects it 
appears to be quite difficult. 
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Fig. 4: The face model positioned for the f/v sound. The lower lip is 
positioned under the teeth (not clearly visible in this view). 

Fig. 5: The face model positioned for the vowel in 'hoe'. 
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