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Figure 1: Our method computes a Saliency diagram that encodes a measure of saliency for each frame in the motion. The
spikes in the diagram tend to correspond to extremes of the animation and thus can be chosen as the most important frames

to consider when analyzing the motion.

ABSTRACT

Keyframes are a core notion used by animators to understand
and describe the motion. In this paper, we take inspiration from
keyframe animation to compute a feature that we call the “Saliency
diagram” of the animation. To create our saliency diagrams, we
visualize how often each frame becomes a keyframe when using
an existing selection technique. Animators can use the resulting
Saliency diagram to analyze the motion.
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« Computing methodologies — Motion capture; « Theory of
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1 INTRODUCTION

While planning a shot and animating is the core task for an animator,
understanding why and how things are moving is a crucial part of
the creative process. “Why” refers to the behaviour of people, so that
the animator will craft solid "acting" choices to create believable
characters. “How” requires the animator to understand the physics
of the motion, leading some animators to study the anatomy of
the animals they animate to help understand the principles of their
locomotion.

Keyframes are the most important poses of an animation and
are enough to understand the story. As introduced by [4], pose-
to-pose is a common workflow among animators. Following this
convention involves first crafting those keyposes, then creating
breakdowns to have a better control of the overall dynamics, and
finally letting the computer — or the inbetweener in traditional
animation — interpolate to obtain a fluid motion. An extra step of
polishing is then applied to add fine scale details to the motion.
In terms of acting, the keyposes will correspond to the main ac-
tions and expressions of the character, while in body mechanics,
the keyposes tell things about the movement: extremes, weight
shifts, contacts, overshoots etc. An important practical application
of identifying keyframes is that it allows captured motion to be
edited using traditional keyframe animation.

However, previous methods cannot solve the problem of finding
the "most important” frames of the animation. For a low number
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of keyframes, they tend to take points that are not geometrically
interesting (Figures 2 and 6). For a high number, they do not provide
a criterion to sort those keyframes by order of importance. Since
pose-to-pose animation is a common workflow, identifying key-
poses of a motion, whether presented as a video or an animation,
is a vital skill for an animator.

Providing a visualization of keyposes presents multiple advan-
tages: it can provide a way for beginners to analyze the motion
and be used as a tool for simplifying motion editing workflows,
furthermore, it is a natural way of encoding the information of the
motion.

Previous work has recognized the importance of such visual-
ization. For example, [1] introduce a low-dimensional embedding
technique to find a few poses that best summarize an action when
rendered and then composed together into an image. As another
example, [5] apply the same low-dimensional embedding technique
(paired with a different representation of the motion) to assemble
a linear timeline of rendered poses that can be used to browse
or compare animations. While these visualization techniques are
already useful, they only communicate the presence (or absence)
of keyposes. In particular, they miss the opportunity to provide
additional information about the keyposes: all keyposes are treated
as equal, where no one keypose can be said to be more important
than any another.

In this paper, we present a new way to visualize a motion. To
build the visualization, we apply “Salient Poses” [3]: an optimal
keyframe selection algorithm that can be used to query different
numbers of keyframes in an animation. In particular, we apply the
Salient Poses algorithm for all possible numbers of keyframes and
collate the information into a histogram that encodes an overall
level of importance for each frame. From the histogram, we can
read keyposes as those frames with high importance.

As the primary contribution of this work, we present our method
to build Saliency diagrams. Importantly, our histogram not only
encodes which frames correspond to keyposes but also the relative
importance of those keyposes, which is distinct from previous work.
The analysis of these keyposes can be particularly interesting for
various purposes such as training, stylization or database storing.
As a secondary contribution, we present an efficient mechanism
to capture rotation information when expressing the animation
as a high-dimensional curve (the input for the keyframe selection
algorithm).

2 KEYFRAME SELECTION WITH SALIENT
POSES

Proposed by Roberts et al. [3], Salient Poses is a keyframe selection
algorithm designed to find sets of keyframes ideal for editing. Ani-
mators can use it to perform keyframe reduction to easily recover
an editable animation from motion capture.

As a summary of the algorithm, it takes as input an anima-
tion and a value function. Precisely, the animation is represented
as a high-dimensional curve! and the value function computes a

! The animation is comprised of a set of joints that each have three translation-based
coordinates. A configuration of these joints can be described as a single point in R*"/**
where n; is the number of joints. The animation can then be expressed by plotting
the configuration of each frame into this space, forming a discrete high-dimensional
curve.

Figure 2: Possible selections of three keyframes. Salient
Poses will choose the left configuration over the right one
since the maximum distance of its reconstruction (in red) to
the original animation is smaller. The dots represent the dis-
cretization of the motion as frames: black dots correspond to
the original animation, red to the linear interpolation using
the keyframe selection, and blue to the selected keyframe.

score describing how distant an interpolation of the given set of
keyframes is from the original animation.? Given these inputs, the
algorithm successively applies dynamic programming to calculate
all optimal sets of keyframes (one set of three keyframes, one of
four, and so on). Each set is optimal in the sense that its keyframes
best summarize the motion as defined by the value function.
While keyframe reduction is useful, the goal of our work is to
help animators examine the sets of keyframes to better understand
the motion. Unfortunately, the sets of keyframes provided by Salient
Poses suffer from two key flaws from when applied for this purpose:

Poor performance for small values of k. From an animator’s per-
spective, we expect keyframes to give priority to the extreme poses
of the motion. However, when k is small, Salient Poses often fails
to select poses related to distinctive extrema. As illustrated by Fig-
ure 2, in cases where extremes are distant in value but not time,
choosing one extreme will typically produce an interpolation very
distant from another extreme. Consequently the value function dis-
courages the choice and, instead, the algorithm will choose poses
unrelated to extrema. Furthermore, the choice of keyframes will
often change dramatically between neighbouring sets (i.e. the set of
k — 1 often features keyframes that occur at significantly different
times than those in k, and so on). Importantly, in these cases, an
animator cannot gain insight when examining the poses provided
by the algorithm.

No rotation information. The value function defined in [3] uses
only the position of the joints and does not take into account their
rotation information. Imagine an animation of a character stand-
ing still and nodding their head: as no positional information has
changed, Salient Poses will not be able to find the keyposes related
to the nodding (the head occurs at the end-effector of the joint
chain). Furthermore, being able to distinguish keyframes with re-
spect to translation and to rotation may provide important insights
that can help animator’s further analyze the motion.

3 METHOD

To address these problems we will:

%In [3], the value function calculates this score by measuring the maximum Euclidean
distance between the original animation and a linear interpolation of the keyframes.
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e introduce a proxy object that expresses rotation information
as translation

o use the output of the Salient Poses algorithm to compute the
"Saliency diagram" of the motion.

3.1 Adding rotation information

To take into account the rotation of the joint J, we introduce an
additional object that we call L (aka locator) that we constrain to the
joint J, i.e L is fixed in the local space of J. Applying Salient Poses
to L would take into account the rotation but there will still remain
the influence of the translation. To avoid that, we can consider the
position of Ly in (J, X, Y, Z) rather than (0, X, Y, Z). Indeed, we
have:

L(],)?,?,Z) =JL=0L-0]
where ]L?t) depends only on the joint rotation:

JL(t) = Ry(t) JLo

In practice, such a mechanism is straightforward to implement.
For example, we create an additional point, constrain it to the
desired joint, calculate its animation when using that constraint,
then subtract the position of the joint at each frame. As expected,
the locator moves on a sphere of center O and radius || ]Zo ||. We
can now apply Salient Poses to L if we want to study the rotation
only, or to (J, L) if we want to take both translation and rotation
into account. Note that when applying Salient Poses to the locator,
it is more accurate to take into account the fact that it moves on a
sphere, by using spherical linear interpolation rather than linear
interpolation and calculating the distance along geodesics rather
than the basic Euclidean distance.

3.2 Saliency diagram

As in previous work [2, 3], we define a keyframe selection as an
element of S, the set of all possible keyframe choices which is the
set of all subsets of {1, ..., Ny} with N the number of frames of
the animation. We call Sy the subset of the elements of cardinal-
ity exactly k of S i.e the set of keyframe selection of exactly k
keyframes.

We can apply Salient Poses to our desired animation A and
obtain all the S*(k) for k € {1, ...,Nf} - we only need to run
Salient Poses once since it computes all the $*(k) in one pass. We
can compute the Saliency diagram of A by averaging all those
keyframe selections.

To do so, rather than seeing S*(k) as an element of NF we con-
sider it as a weight distribution. Let us say that the animation A has
a total weight of 1, choosing a k-keyframe selection is equivalent
to distribute this weight on those k frames. (cf. Figure 3)

of a keyframe selection

Figure 3: Keyframe selection {0,2,4,10} as a distribution.
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Once represented as a weight distribution, we average S*(k)
using a summation (see Figure 4). Finally, to improve the clearness
of the spikes, we apply gaussian convolution to the diagram (recall
that selecting a frame f does not exactly mean putting the weight
on f but rather putting it somewhere on [f — & f, f + § f]).

Figure 5: An animation and its corresponding Saliency di-
agram. The spikes in the histogram corresponds to the ex-
tremes of the motion trail.

Notably, the averaging we computed (c.f. Figure 5) is not a
keyframe selection but rather a distribution. The histograms feature
both major and minor spikes: a spike indicates that a keyframes
was picked more than usual and is more truly a “salient” poses than
other less-often picked keyframes. Using the diagram, selecting the
most important keyframes becomes the task of selecting the major
spikes in the histogram.

4 RESULTS

First, we apply Salient Poses with a very low number of keyframes
on multiple animations. An example is shown in Figure 6. In this
example, the keyposes chosen by Salient Poses are not well suited
for visualizing the motion: a blocking using only those poses cannot
convey the motion, and we would not understand that it is a jump.
The main spikes obtained by our approach does not correspond to
the frames selected in S$*(2), in particular, we choose more mean-
ingful extreme poses. This figure illustrates how we outperform
Salient poses for low values of k.

4.1 Auxiliary rotation signal

To verify that our locator-design is useful, we applied our algo-
rithm to the locator of the root joint of animations where there
are clear offsets between the rotation and the translation. Jump
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Figure 6: Keyposes selected by Salient Poses (top) and our
method (bottom) for k = 4. The position of the hips is high-
lighted: our algorithm chooses the extreme positions of the
root while Salient Poses chooses non-extreme positions.

movements are one such example as the rotation generally occurs
after a translation in order to balance the center of gravity. In such
a case, we expect to see that our Saliency diagram finds keyposes
for the locator animation but not for the translation animation.
Figure 7 shows the result for one of those jump motions which is
in accordance with our expectations.

Figure 7: The motion trail of the rotation locator (right) and
the motion trail of the position of the hips (left) with the
selected frames colored. Red dots are the keyframes selected
by our algorithm applied to the rotation locator, blue dots
are the keyframes applied to the position of the hips.

4.2 Discussion

Our algorithm is complementary to Salient Poses: it is designed to
work particularly well for low values of k where Salient Poses fails
to find geometrically distinctive poses. Importantly, our algorithm
can also be used to reduce computation time. In the original paper,
[3] suggest that to limit computation time for larger animations,
the animation should be segmented into pieces. However, they do
not provide a method to choose such segments. Using our Saliency
diagram, we can choose the most important keyposes as candidates
for segmentation: we can then redesign a version of Salient Poses
that continuously updates the current Saliency diagram — which
is not costly to compute - and subdivides the animation when
an important keyframe is detected via a threshold. If we make
the assumption that the expected distance between two important
keyframes is bounded, our algorithm is linear whereas Salient Poses
is polynomial.

Ultimately, our Saliency diagrams expose the statistics of Salient
Poses and, consequently, provide a new way to analyze the motion.

For example, one can create multiple Saliency diagrams, using
different error functions, and examine the spikes to identify which
set of keyframes are most prevalent under different criteria.

5 DISCUSSION

5.1 Limitations

The most obvious limitation of our work is the lack of metric for
evaluation. We do not have a way, other than using our own eyes,
to state quantitatively whether a pose is suitable as keypose or not.
This problem remains ill-posed.

In the particular case where our locator is positioned on an axis
of rotation, our approach will not be able to capture the rotation
information. While this degenerate case would occur rarely in
practice as we pick our locator randomly on a sphere centered in
the corresponding joint, there must be a better way to address the
issue.

When we express our keyframe selection as a weight distribu-
tion, we choose to distribute our weight uniformly over the chosen
keyframes. However, all frames are not equivalent and using in-
formation from Salient Poses (especially how taking this keyframe
benefits the value function V) to compute those weights would
give better results.

Finally, our method effectively computes an Euclidean Barycen-
ter from the weight distributions. However, Euclidean distance is
not well suited to compare distributions and is particularly bad
when considering distributions with non-intersecting support (as is
this case when working simultaneously with different animations).

5.2 Future work

Our immediate future work will seek a metric to quantify whether a
given frame is suitable as a keyframe under different contexts (such
as visualization, editing, and more). Other future work will examine
how our Saliency diagram can be used as a way to encode addi-
tional information about the motion, much like color histograms or
saliency maps do in Computer Vision. We also aim to employ our
Saliency diagrams to study well-known animation concepts such
as overlaps or the leading part, and to compare different animations
to find correspondences between them, such as those related to
morphing.
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