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Abstract

We introduce the HSIC (Hilbert-Schmidt independence crite-
rion) bottleneck for training deep neural networks. The HSIC
bottleneck is an alternative to the conventional cross-entropy
loss and backpropagation that has a number of distinct advan-
tages. It mitigates exploding and vanishing gradients, resulting
in the ability to learn very deep networks without skip con-
nections. There is no requirement for symmetric feedback or
update locking. We find that the HSIC bottleneck provides per-
formance on MNIST/FashionMNIST/CIFAR10 classification
comparable to backpropagation with a cross-entropy target,
even when the system is not encouraged to make the output
resemble the classification labels. Appending a single layer
trained with SGD (without backpropagation) to reformat the
information further improves performance.

1 Introduction
Deep learning has brought a new level of performance to an
increasingly wide range of tasks. In practice however, the
stochastic gradient descent (SGD) algorithm (and its variants)
and the associated error back-propagation algorithm under-
lying deep learning are time consuming, have problems of
vanishing and exploding gradients, require sequential compu-
tation across layers and update locking, and typically require
the exploration of learning rates and other hyperparameters.
At the same time, backpropagation is generally regarded as
being not biologically plausible. These considerations are
driving research into both theoretical and practical alterna-
tives.

We propose a deep network training method that does
not use the cross-entropy loss or backpropagation. An al-
ternate information-theoretic motivation of training a clas-
sifier can be found in terms of the Fano inequality and
mutual information. In our context, Fano’s inequality in-
dicates that the probability of classification error depends
on the conditional entropy H(Y |X), with Y being the la-
bel and X some representation of the input. Additionally,
the mutual information I(X,Y ) can be written in the form
I(X,Y ) = H(Y )−H(Y |X). Note that the entropy of the
labels is constant with respect to the network weights. When
the probability of mis-classification is low, H(Y |X) is also
low, and the mutual information is high. Mutual information
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thus provides a training objective that directly involves the
representation X , unlike cross entropy, which involves X
only through backpropagation.

As is the case with cross entropy, an algorithm trained
exclusively using mutual information is vulnerable to over-
fitting. To address this we train the network using an ap-
proximation of the information bottleneck (Tishby, Pereira,
and Bialek 1999). Due to the practical difficulties of calcu-
lating the mutual information among the random variables,
we adopt a non-parametric kernel-based method, the Hilbert-
Schmidt independence criterion (HSIC), to characterize the
statistical (in)dependence of different layers. That is, for each
network layer we maximize HSIC between the layer activa-
tion and the desired output and minimize HSIC between that
layer activation and the input. In some cases, the final-layer
representations resulting from this HSIC bottleneck training
are nearly one-hot and can be directly used for classifica-
tion after identifying a single fixed permutation. Alternately,
following HSIC bottleneck training, we append a single clas-
sification layer that is trained with SGD (without backpropa-
gation), consistently obtaining performance competitive with
an architecturally equivalent network trained with backprop-
agation. We provide an informal discussion of the relation
between HSIC and mutual information in the Appendix.

Our work joins an increasing body of recent research that
explores deep learning fundamentals from an information
theoretical perspective ((Shwartz-Ziv and Tishby 2017; Saxe
et al. 2018; Tishby, Pereira, and Bialek 1999; Belghazi et al.
2018) and others). Our contributions are as follows:

We demonstrate that it is possible to train deep classifica-
tion networks using an information bottleneck principle, with-
out backpropagation, and obtain results competitive with the
standard backpropagation optimization of the cross-entropy
objective. The HSIC bottleneck approach1 mitigates the issue
of vanishing or exploding gradients in backpropagation. As
the HSIC-bottleneck operates directly on continuous random
variables, it is more attractive than conventional information
bottleneck approaches based on binning. Because the net-
work training is explicitly based on an information bottleneck
principle, it addresses overfitting by design. It further ad-
dresses the weight transport and update locking problems of

1Our code is available at https://github.com/
choasma/HSIC-Bottleneck



backpropagation.
The experimental results demonstrate training several sim-

ple textbook architectures using the HSIC bottleneck, to-
gether with the results of the otherwise identical architec-
ture trained with backpropagation. However, note that the
backpropagation results require an additional final layer and
softmax that is not required nor used in the “unformatted”
HSIC-training case. While the results provide a fair compar-
ison, there was no exploration of alternative architectures,
regularization, or data augmentation, and relatively little ef-
fort towards finding optimal hyperparameters. Thus neither
the backpropagation baseline nor our method give state-of-
the-art results, and further improvements are likely possible.

Notation. Upper case (e.g., X,Y ) denotes random vari-
ables. Bold denotes vectors of observations (lower case,
e.g., x,y) or matrices (e.g., H,K). Hilbert spaces are de-
noted with calligraphic font (e.g., G,H).

2 Background and Related Work
Although SGD using the backpropagation algorithm (Werbos
1990) is the predominant approach to optimizing deep neu-
ral nets, other approaches have been considered (Balduzzi,
Vanchinathan, and Buhmann 2015; Lillicrap et al. 2016;
Moskovitz, Litwin-Kumar, and Abbott 2018; Kohan, Ri-
etman, and Siegelmann 2018; Choromanska et al. 2019).
Kickback (Balduzzi, Vanchinathan, and Buhmann 2015) fol-
lows the local gradient using a direction obtained from the
global single-class error. Feedback alignment (Lillicrap et
al. 2016) shows that deep neural networks can be trained
using random feedback connections. The alternating mini-
mization (Choromanska et al. 2019), a coordinate descent-
like approach, breaks the nested objective into a collection
of subproblems by introducing auxiliary variables, thereby
allowing layer-parallel updates.

Information theory (Cover and Thomas 2006) underlies
much research on learning theory (Belghazi et al. 2018;
Kwak and Chong-Ho Choi 2002; Brakel and Bengio 2018)
as well as thinking in neuroscience (Baddeley, Foldiak, and
Hancock 1999). The Information Bottleneck (IB) principle
(Tishby, Pereira, and Bialek 1999) generalizes the notion
of minimal sufficient statistics, expressing a tradeoff in the
hidden representation between the information needed for
predicting the output, and the information retained about the
input. The IB objective is

min
pTi|X

I(X;Ti)− βI(Ti;Y ), (1)

where X , Y are the input and label random variable respec-
tively, and Ti represents the hidden representation at layer
i. Intuitively, the IB principal preserves the information of
the hidden representations about the label while compressing
information about the input data.

The IB principle has been employed both to explore deep
learning dynamics and as a training objective in a growing
body of recent work (Shwartz-Ziv and Tishby 2017; Saxe et
al. 2018; Goldfeld et al. 2018; Alemi et al. 2017; Wu et al.
2018; Kolchinsky, Tracey, and Wolpert 2017; Banerjee and
Montúfar 2018; Amjad and Geiger 2018) and others.

In practice, the IB is hard to compute for several reasons.
If the network inputs are regarded as continuous, the mu-
tual information I(X,Ti) is infinite unless noise is added to
the network. Many algorithms are based on binning, which
suffers from the curse of dimensionality and yields differ-
ent results with different choices of bin size. The distinction
between discrete and continuous data, and between discrete
and differential entropy, presents additional considerations
(Saxe et al. 2018; Goldfeld et al. 2018). These issues are
clearly surveyed in (Amjad and Geiger 2018). In the case of
continuous variables and a deterministic network, the true MI
is infinite, while discrete data results in a piecewise-constant
MI that is also unsuited for optimization. Existing approaches
to applying IB to DNN learning have resorted to MI approxi-
mations such as adding noise and computing a bound rather
than the actual quantity. However tighter bounds may not
be better (Tschannen et al. 2019). It has been argued that
the IB has inherent problems when applied to deep neural
nets, and that current results may reflect the approximations
to MI and inductive biases of the networks more than the
true underlying mutual information (Amjad and Geiger 2018;
Tschannen et al. 2019).

In this paper, we replace the mutual information terms in
the information bottleneck objective with HSIC. In contrast
to mutual information based estimates, HSIC provides a ro-
bust computation with a time complexity O(m2) where m is
the number of data points.2 HSIC (Gretton et al. 2005) is the
Hilbert-Schmidt norm of the cross-covariance operator be-
tween the distributions in Reproducing Kernel Hilbert Space
(RKHS). The formulation of HSIC is:

HSIC(PXY ,H,G) = ‖CXY ‖2

= EXYX′Y ′ [kX(X,X ′)kY ′(Y, Y
′)]

+ EXX′ [kX(X,X ′)]EY ′ [kY (Y, Y ′)]
− 2EXY [EX′ [kX(X,X ′)]EY ′ [kY (Y, Y ′)]],

(2)

where kX and kY are kernel functions, H and G are the
Hilbert spaces, and EXY is the expectation over X and Y .

Let D := {(x1,y1), · · · , (xm,ym)} contain m i.i.d. sam-
ples drawn from PXY , where xi ∈ Rdx and yi ∈ Rdy . Then
(2) leads to the following empirical expression (Gretton et al.
2005):

HSIC(D,H,G) = (m− 1)−2 tr(KXHKY H) (3)

where KX ∈ Rm×m and KY ∈ Rm×m have entries
KXij = k(xi,xj) and KY ij = k(yi,yj), and H ∈ Rm×m

is the centering matrix H = Im − 1
m1m1Tm.

With an appropriate kernel choice such as the Gaussian
k(x,y) ∼ exp(− 1

2‖x − y‖2/σ2), HSIC is zero if and
only if the random variables X and Y are independent,
PXY = PXPY (Sriperumbudur, Fukumizu, and Lanckriet
2010). An intuition for the HSIC approach is provided by
the fact that the series expansion of the exponential contains
a weighted sum of all moments of the data, and (under rea-
sonable conditions) two distributions are equal if and only if

2In our context m is the minibatch size.



their moments are identical. Considering the expression (3),
the i’th of component of (3) is

〈kXi,1, kXi,2, · · · , kXi,n〉·〈kY 1,i, kY 2,i, · · · , kY n,i〉 (4)

where kxi,j ≡ (KXH)i,j and similarly kyi,j ≡ (KY H)i,j .
This inner product will be large when the relation between
each point i of X and all other points of X is similar to
the relation between the corresponding point i of Y and all
other points of Y , summed over all i, and where similarity
is measured through the kernel k(xi, xj) that (appropriately
chosen) captures all statistical moments of the data.

In our experiments we use the normalized-HSIC (nHSIC)
formulation based on the normalized cross-covariance op-
erator (Fukumizu et al. 2008; Blaschko and Gretton 2008),
given by:

nHSIC(D,H,G) = tr(K̃XK̃Y ) (5)

where K̃X = KX

(
KX + εmIm

)−1
and K̃Y =

KY

(
KY + εmIm

)−1
. KX and KY denote centered kernel

matrices, and ε is a small constant.
Unlike mutual information, HSIC does not have an inter-

pretation in terms of information theoretic quantities (bits
or nats). On the other hand, HSIC does not require density
estimation and is simple and reliable to compute. Moreover,
kernel distribution embedding approaches such as HSIC can
also be resistant to outliers, as can be seen by considering the
effect of outliers under the Gaussian kernel. The empirical
estimate converges to the population HSIC value at the rate
1/
√
n independent of the dimensionality of the data (Gretton

et al. 2005), meaning that it partially circumvents the curse
of dimensionality.

HSIC is widely used as a dependency measurement, in-
cluding in the deep learning literature. For example, (Wu
et al. 2018) investigated the generalization properties of au-
toencoders using HSIC, while (Lopez et al. 2018) uses HSIC
to restrict the latent space search to constrain the aggregate
variational posterior. (Vepakomma et al. 2019) use distance
correlation (an alternate formulation of HSIC) to remove
unnecessary private information from medical training data.

While in principle HSIC can discover arbitrary depen-
dencies between variables, in practice and with finite data
the choice of the σ parameter in the HSIC kernel empha-
sizes relationships at some scales more than others. In-
tuitively, two data points x, y are not well distinguished
when their difference is sufficiently small or large, such
that they lie on the small-slope portions of the Gaussian.
This is typically handled by choosing the kernel σ based on
median distances among the data (Sejdinovic et al. 2012;
Sugiyama and Yamada 2012), or by a hyperparameter search.

In our case, the data “points” are minibatches of activations
from different network layers, and thus have different dimen-
sionality. This suggests that different σ values should be
used in each kernel. Using the observation that the expected
squared distance between random points scales with dimen-
sion, these multiple hyperparameters can be approximated
by scaling a single σ with the dimensionality d of points x
and y as: k(x,y) ∼ exp(− 1

2‖x − y‖2/(σ2d)) (used in all
our experiments).

3 Proposed Method
In this section we introduce the proposed HSIC-trained net-
work. Training a deep network without backpropagation us-
ing the HSIC-bottleneck objective will be generally termed
HSIC-bottleneck training or HSIC training. The output of the
bottleneck-trained network contains the information neces-
sary for classification, but not necessarily in the right form.
We evaluate two specific approaches to produce classifica-
tions from the HSIC-bottleneck trained network. First, if the
outputs are one-hot, they can simply be permuted to align
with the training labels. This is termed unformatted training.
In the second scheme, we append a single layer and soft-
max output to the frozen unformatted-trained network, and
train the appended layer using SGD without backpropagation.
Since this step is “reformatting” the information, this step
is termed format training. Note that the baseline networks
trained with backpropagation contain this softmax layer in
every case.

X Z0 Z1 Zi−1 Zi ZL−1

T0( ⋅ )
T1( ⋅ ) Ti( ⋅ ) TL( ⋅ )

. . . . . . ZL

O( ⋅ )
Y

(a) HSIC-trained Network

O( ⋅ )

X Aggregator
HISC-netσ0

...
...

...
...

...
...

YHISC-netσi

HISC-netσn

(b) multiple-scale network

Figure 1: The HSIC-trained network (Fig. 1a) is a standard
feedforward network trained using the HSIC-bottleneck ob-
jective, resulting in hidden representations at the last layer
that can easily be used for classification. Fig. 1b shows a
multiple-scale network, where each branch HSIC-netσj is
trained with a specific σ. The aggregator averages the hidden
representations to form an output representation.

3.1 HSIC-Bottleneck
Suppose we have a network composed of L hidden layers
Ti(·) : Rdi−1 → Rdi , resulting in hidden representations3

Zi ∈ Rm×di , where i ∈ {1, ..., L}, and m denotes batch
size. Implementing the Information Bottleneck principle, we
replace the original mutual information terms with nHSIC

3This can be extended to the activations produced from convo-
lutional layers, as each activation is flattened and stacked in array
Zi.



(5) as the learning objective:

Z∗i = argmin
Zi

nHSIC(Zi,X)− β nHSIC(Zi,Y), (6)

where X ∈ Rm×dx is the input, Y ∈ Rm×dy is the label,
i ∈ {0, ..., L}, L is the number of hidden layers, and dx and
dy are the dimensionalities of the input and output variables
respectively. Since we concentrate on classification in our
experiments, dy is the number of classes (we expect the
HSIC bottleneck approach can be applied to other tasks such
as regression). The β controls the balance of IB objectives.
Following nHSIC of (5), the nHSIC of each term is:

nHSIC(Zi,X) = tr(K̃Zi
K̃X)

nHSIC(Zi,Y) = tr(K̃Zi
K̃Y )

(7)

The formulation (6), (7) suggests that the optimal hidden
representation Zi finds a balance between independence from
unnecessary details of the input and dependence with the
output. Ideally, the information needed to predict the label is
retained when (6) converges, while unnecessary information
that would permit overfitting is removed.

We optimize equation (6) independently at each layer using
block coordinate descent without gradient propagation.

Algorithm 1: Unformatted training

Data: Xj ∈ Rm×dx : data batch j, Yj ∈ Rm×dy : label
batch j, layer Ti parameterized by {θi|Wi, bi},
i ∈ {1, ..., L}: layer iterator, j ∈ {1, ..., bn/mc}:
batch iterator, m: batch size, n: number of input
data, α: learning rate.

Result: Saved HSIC-trained network
Ti(·) : Rdi−1 → Rdi , i ∈ {1, ..., L}

for j ∈ {1, ..., n/m} do
for i ∈ {1, ..., L} do

Zi = Ti−1(Zi−1) // Z0 = Xj

gi = ∇θi(nHSIC(Zi,Xj)− βnHSIC(Zi,Yj))
θi ← θi − αgi

end
end

3.2 Unformatted training
As shown in the Experiments section, unformatted HSIC-
bottleneck training tends to produce one-hot outputs in some
experiments. This inspired us to use the HSIC-bottleneck
objective to directly solve the classification problem. This
is done by setting the dimensionality of the last layer ZL
to match the number of classes (e.g., dL = dy). Since the
resulting activation is typically permuted with respect to
the labels (e.g., images of the digit zero might activate the
forth output layer entry), we simply find a fixed permutation
by picking the output with the highest activation across the
inputs of a particular class as the output for that class. Please
refer to Algorithm 1 for more detail.

3.3 Format-trained network
We append a single output layer O(·) : RdL → Rdy
equipped with a softmax function for classification (Fig. 1),
taking the optimized last-layer hidden representation from a
unformatted-trained network as its input. The new layer is
trained using minibatch SGD with the loss

Lformat = CE
(
Y, O(ZL)

)
where CE denotes the cross entropy loss.

3.4 Multiple-scale network
In principle, HSIC is a powerful measure of statistical inde-
pendence, however in practice the results do depend some-
what on the chosen σ parameter even when using the normal-
ized form (5). To cope with this, we combine HSIC-trained
networks with different σ, and then aggregate the resulting
hidden representations. This multiple-scale network architec-
ture is illustrated in Fig. 1b, and has the objective

LComb(X,Y) = CE
(

Y, O
( 1
n

n∑
i

HSIC-netσi(X)
))

where the output classifier layer O(·) takes the average
of representations from the unformatted-trained networks,
HSIC-netσi , trained with σi, i ∈ {1, ..., n}. Then it opti-
mizes the layer O(·) with cross entropy while keeping the
trained HSIC-netσi fixed. The performance of the multiple-
scale network is presented below in Section 4.3.

3.5 Performance
Performance comparisons with backpropagation are difficult
since the HSIC bottleneck performance depends heavily on
the minibatch size. SGD backpropagation schemes are linear
in the number of data points. HSIC is O(m2) where m is the
minibatch size in our case.4 Typically the minibatch size is
a constant that is chosen based on validation performance
and/or available GPU memory rather than scaling with the
data, so strictly speaking the HSIC-bottleneck approach is
also linear in the number of data points. However, the learning
convergence is a quantity of ultimate interest. This quantity
is not known for either backpropagation or HSIC bottleneck,
and it may be different considering the fundamentally distinct
character of these two approaches. HSIC bottleneck is more
amenable to layer parallel computation, since the need for
backpropagation is removed.

4 Experiments
In this section, we report several experiments that explore and
validate the HSIC-trained network concept. First, to motivate
our work, we plot the HSIC-bottleneck values and activa-
tion distributions of a simple model during backpropagation
training. We then show how unformatted training can pro-
duce one-hot results that are directly ready for classification.
Next, we compare backpropagation with format training on
networks with different numbers of layers. The effect of un-
formatted training on format training and the effect of the

4However our github reference code uses an O(m3) implemen-
tation for simplicity.



hyperparameter σ are considered in the next experiments.
Lastly, we briefly consider the application of HSIC training
to other network architectures such as ResNet.

For the experiments, we used standard feedforward net-
works with batch-normalization (Ioffe and Szegedy 2015)
on the MNIST/Fashion MNIST/CIFAR10 datasets. All ex-
periments including standard backpropagation, unformatted-
trained, and format-trained, use a simple SGD optimizer.
The coefficient β and the kernel scale factor σ of the HSIC-
bottleneck were set to 500 and 5 respectively,5 which em-
pirically balances compression and the relevant information
available for the classification task.

Before considering the use of the HSIC-bottleneck as a
training objective, we first validate its relevance in the context
of conventional deep network training (Fig. 2). Monitoring
the nHSIC between hidden activations and the input and
output of a simple network trained using backpropagation
shows that nHSIC(Y,ZL) rapidly increased during early
training as representations are formed, while nHSIC(X,ZL)
rapidly drops. The value of nHSIC(Y,ZL) varies with the
network depth (Fig. 2e) and depends on the choice of activa-
tion (Fig. 2b). Furthermore, it clearly parallels the increase in
training accuracy (Fig. 2c, Fig. 2f). In summary, Fig. 2 shows
that a range of different networks follow the information
bottleneck principal.
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Figure 2: Visualization of the HSIC-bottleneck quantities
nHSIC(X,ZL), nHSIC(Y,ZL) and training accuracy as a
function of epoch number, monitored during conventional
backpropagation training across various network activation
functions Figs. (2a)-(2c) and depths Figs. (2d)-(2f). Figs. (2d)-
(2f) ReLU with different network depths. Figs. (2a)–(2c)
vary only the activation type. The shaded area in the plots
represents the standard deviation of the unsmoothed training
performance.

5For complete details of the experiments refer to our github
repository.

4.1 Unformatted training
Next, we try using the HSIC-bottleneck as the sole training
objective. We use a fully connected network architecture 784-
256-256-256-256-256-10 with ReLU activation functions.
Remarkably, in experiments on CIFAR10, FashionMNIST,
and MNIST, the HSIC-trained network often results in non-
overlapping one-hot output activations for many (but not
all) random weight initializations, as seen in Fig. 3. This
allows classification to be performed by simply using a fixed
permutation, i.e., using the highest activation distribution
value to select the class. For example in Fig. 3, the class
activities of MNIST dataset from digit zero to nine have
highest density at entries: 7, 6, 5, 4, 3, 2, 8, 1, 0, 9. We
also tested a toy model to show that a network trained with
unformatted training can separate classes in a R1 latent space.
More detail on this experiment is shown in the Appendix.

Our approach can produce results competitive with stan-
dard training. Fig. 4 illustrates the result for both backpropa-
gation and unformatted training for otherwise identical net-
works. We see that unformatted training provides comparable
results to backpropagation when the network is shallow (top-
row); however, the performance of backpropagation is poor
for deep networks (bottom-row). Note that the CIFAR10 re-
sults use a fully connected rather than convolutional network.
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Figure 3: The MNIST output category distribution for a shal-
low fully-connected network. Each of the subfigures is the
output for a specific category, from the ‘zero’ digits (top-left)
to the ‘nine’ digits (bottom right). The zero inputs produced a
one-hot activation in position seven, and the nines produces a
one-hot activation in position nine, respectively. The particu-
lar permutation depends on the random weight initialization.

The obtained results support the idea that unformatted
training encodes the input variables in a form from which
the desired output can be easily discovered, either by simple
permutation or by format training.

4.2 Format Training Results
An interesting question regarding deep neural networks is
how effectively these stacked layers learn the information
from the input and the label. To explore this, we fixed all the
hyper-parameters of an unformatted-trained network except
the training time (number of epochs). We expect that train-
ing the unformatted-trained network for more epochs will
result in a hidden representation that better represents the
information needed to predict the label, resulting in higher
accuracy in the format training stage. Fig. 5 shows the re-
sult of this experiment, specifically, the accuracy and loss of
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Figure 4: The test accuracy of HSIC-bottleneck training on
standard classification problems as a function of epoch num-
ber. The experiments use the same architecture where the top-
and bottom-row use 5 and 50 hidden layers, respectively.

format training on a five-layer unformatted-trained network
trained with 1, 5, and 10 epochs. From Fig. 5 it is evident
that the unformatted-trained network can boost accuracy at
the beginning of SGD format training. Additionally, as the
unformatted-trained network trains longer, the format train-
ing yields higher accuracy.
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Figure 5: Format-trained training accuracy as a function of
epoch number for a unformatted-trained network trained for
1, 5, and 10 epochs. “HTep” denotes the number of epochs
that the unformatted-trained network used. Unformatted train-
ing to convergence provides better format training perfor-
mance in this experiment.

4.3 Network Capacity and Scale
Fig. 6a shows the effect of different widths in the unformatted-
trained network followed by a format-trained step. The dif-
ferences in the width of the unformatted-trained networks
are reflected in the different training accuracy in the format
training stage.

Fig. 6a indicates that larger networks (say width-64 com-
pared to width-8) lead to a faster-converging format training
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Figure 6: Test accuracy versus epoch number for differently
sized unformatted-trained networks (Fig. 6a) and a multiple-
scale network (Fig. 6b). The format training experiment sug-
gests that larger capacity provides more relevant information
to the format training stage. The multiple-scale network la-
belled with "σ-combined" demonstrates that using several
distinct σ values improves performance. Fig. 6c gives the test
accuracy as a function of σ for the network trained with one
epoch.

stage. This suggests the HSIC bottleneck objective (6) works
effectively on large networks that provide more relevant in-
formation to the format training.

As mentioned in previous section, the HSIC results do
depend on the chosen σ. In the multiple-scale network ex-
periment (Fig. 6b), we aggregate several unformatted-trained
networks with different σ together in parallel to better capture
dependencies at multiple scales. Our experiment setup trains
three parallel HSIC networks having the same five-layered
configuration but with different kernel widths σ = 1, σ = 5,
and σ = 10. The resulting format training performance is
shown in Fig. 6b.

The results show format training on the multiple-scale net-
work outperforms other experiments, suggesting that it is
providing additional information relating to the correspond-
ing scale to the format training stage. It also indicates that
a single σ is not sufficient to capture all dependencies in
these networks. Treating σ as a learnable parameter is left for
future work.

4.4 Experiments on ResNet
Our previous results aimed at demonstrating the training effi-
cacy of the new paradigm are based on basic fully connected
feedforward networks. To show that the paradigm is poten-
tially effective for other architectures, we train a ResNet with
the unformatted-trained framework by adding the loss (6) to
the output of each residual block.

In Fig. 7, we show the test performance for a network with
five convolutional residual blocks on several datasets in the
initial epochs. Each experiment includes five unformatted-
trained epochs followed by format training with a one-layer
classifier network, and the comparison with its standard
backpropagation-trained counterpart.

Our results show that the format training converges more
rapidly to high accuracy performance by making use of the
distinct representations from the unformatted-trained net-
work. The final test accuracy from Fig. 7 is (98.8%, 88.3%,
59.4%) for format-trained and (98.4%, 87.6%, 56.5%) for
backpropagation-trained networks, for MNIST, FashionM-
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Figure 7: Test accuracy versus epoch number for ResNet.
The performance is shown for the comparison between the
ResNet trained with format training and a backpropagation
network.

NIST, and CIFAR10 respectively. The CIFAR10 result is
well below state-of-the-art performance, because we are not
using a state-of-the-art architecture. Nevertheless, the HSIC-
bottleneck network provides a significant boost in conver-
gence.

5 Conclusion
We present a new approach to training deep neural networks
without the use of backpropagation. The method is inspired
by the information bottleneck and can be seen as an approxi-
mation there-of, but (to our knowledge) is the first approach
that sidesteps the well known issues in computing mutual
information in deep neural networks by using HSIC as a sur-
rogate.6 “Unformatted” HSIC-bottleneck training of several
standard classification problems results in one-hot output
that can be directly permuted to perform classification, with
accuracy approximately comparable to that of standard back-
propagation training of the same architectures. Performance
is further improved by using the outputs as representations for
a format training stage, in which a single layer (and softmax)
is appended and trained with conventional SGD, but with-
out backpropagation. The HSIC bottleneck trained network
provides good hidden representations by removing irrelevant
information and retaining information that is important for
the task at hand.

HSIC bottleneck training has several benefits over conven-
tional backpropagation:
• it is able to train deep networks for which backpropagation

training fails (Fig. 4);
• it mitigates the vanishing and exploding gradient issues

found in conventional backpropagation, since it solves the
problem layer-by-layer without the use of the chain rule;

• it removes the need for backward sweeps;
• it potentially allows layers to be trained in parallel, using

layerwise block coordinate descent;
• although our approach is not intended to be biologically

plausible, it does address the weight transport (Lillicrap et
al. 2016) and update locking problems.
6(Vepakomma et al. 2019) also introduce an HSIC-like objective

for the purpose of minimizing unnecessary dependency with the
input. Their method differs in that it lacks the second term in (6)
and cannot be interpreted as an information bottleneck scheme.

Our work is an initial exploration of backpropagation-
free learning using the HSIC bottleneck, and, in common
with other explorations of new training methods for deep
learning, e.g., (Choromanska et al. 2019; de Souza Farias and
Maziero 2018)) does not attempt to achieve state-of-the-art
performance. Future work could consider careful tuning of
the σ in HSIC to improve performance and evaluate the HSIC-
bottleneck approach on different tasks such as regression and
generative models.
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Appendix
Relating HSIC to Entropy

Although HSIC is a measure of (in)dependence, its exact re-
lation to mutual information has not been established. Mutual
information is defined in terms of entropy, and it has been
observed that entropy and Fisher information are related as
volume and surface area (Cover and Thomas 2006).

In this section we outline an informal argument that HSIC
is analogously related to diameter, making use of the identity
I(X,X) = H(X). The relation of entropy to volume is eas-
ily suggested in the case of a multivariate Gaussian random
variable with covariance matrix C. The entropy in this case is
H(Xgaussian) = 1

2 log
(
(2πe)d|C|

)
∝ log detC + constant.

Here the interpretation as a “volume” can be seen through the
determinant. For comparison with HSIC (below), note that C
is symmetric and can be diagonalized with real eigenvalues,
detC = detUΛUT = detΛ =

∏
λk.

Turning to HSIC, denoting K̃X = HKXH and similarly
for Y, the HSIC computation is 1

n2 tr K̃XK̃Y . HSIC(X,X) is
thus simply 1

n2 tr K̃2
X , i.e. the squared Frobenius norm of the

feature covariance matrix. Now in general ‖A‖2F =
∑
λ2k be-

cause trATA = tr(PΛP−1)(PΛP−1) = trPΛ2P−1 =
trΛ2, making use of the Jordan normal decomposition (or
eigendecomposition in our case because K̃X is symmetric).

In summary, entropy is related to volume, as can be see in
the Gaussian case through the presence of the determinant,
i.e. the product of the eigenvalues. HSIC(X,X) is related to
the Frobenius norm, which is a sum of eigenvalues, i.e. a
“diameter”.

Toy unformatted training solve

Fig. 3 shows that unformatted training discriminates class sig-
nals with a one-hot effect. We did a further experiment based
on a simple model sized 784-256-128-64-32-16-8-1 with
backpropagation and unformatted training. For the backprop-
agation network, we appended an output layer O ∈ R10 to
support the cross-entropy objective. This experiment shows
how well the unformatted training can separate the signal
classes in R1. Although the results change based on the ran-
dom seed, we found that unformatted training typically pro-
duces better separation than backpropagation (Fig. 8).
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Figure 8: The per-class activations on MNIST for a single
tanh output neuron, for networks trained with backpropaga-
tion (Fig 8a) and unformatted training (Fig 8b). Each curve
represents the activation distribution from particular image
category. The distributions are generated by Gaussian kernel
density estimation.
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