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Fig. 1. (left) We compactly model muscles as a collection of generalized rods, where volume conservation is expressed by a radius function defined on curve’s
vertices – vis sphere’s radii. (middle) In the limit, this discretization represents the smooth rods illustrated here, for which physical constraints due to volume
invariance can be expressed analytically. (right) The rods create a subspace on which physics is solved, and its effects later propagated to the muscle mesh via
linear blend skinning; please see the animation in our supplemental video. The “Max” anatomical model is courtesy of ZIVA Dynamics.

Weextend the formulation of position-based rods to include elastic volumetric
deformations. We achieve this by introducing an additional degree of free-
dom per vertex – isotropic scale (and its velocity). Including scale enriches
the space of possible deformations, allowing the simulation of volumetric
effects, such as a reduction in cross-sectional area when a rod is stretched.
We rigorously derive the continuous formulation of its elastic energy po-
tentials, and hence its associated position-based dynamics (PBD) updates,
to realize this model, enabling the simulation with of up to 15000 DOFs at
100 Hz in our GPU implementation. We further show how rods can provide a
compact alternative to tetrahedral meshes for the representation of complex
muscle deformations, as well as providing a convenient representation for
collision detection. This is achieved by modeling a muscle as a bundle of
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rods, for which we also introduce a technique to automatically convert a
muscle surface mesh into a rods-bundle. Finally, we show how rods and/or
bundles can be skinned to a surface mesh to drive its deformation, resulting
in an alternative to cages for real-time volumetric deformation. The source
code of our physics engine will be openly available upon publication.
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Fig. 2. (top) Skeletal striated muscle as a collections of nested fascicles,
fibres, and myofibrils; base image courtesy of [Lee et al. 2010]. (bottom) We
abstract the fascicles as a collection of rods. These can be overlapping, and
their rest-pose structure is controlled by shape-matching constraints.

Fig. 3. Bio-mechanically accurate simulation of volumetric anatomical struc-
ture is the most effective way to simulate secondary motions (e.g. skin
sliding on muscles) and deliver true realistic appearance to dynamic virtual
characters; image courtesy of [Ziva Dynamics 2018].

1 INTRODUCTION

In recent years, the computer graphics community has invested
exceptional efforts in adapting the (non real-time) physical simula-
tion algorithms at the core of cinematic special effects (e.g.: [Ziva
Dynamics 2018]) to the realm of (real-time) interactive applications
(e.g.: games, AR/VR). Many of these advancements have been pos-
sible thanks to a new class of physics solver, pioneered by Müller
et al. [2007], realized on top of Verlet-class integrators [Bender et al.
2015]. These position-based solvers are capable of elegantly model-
ing constrained Newtonian dynamics, including rigid-body, cloth,
ropes, rods and fluids in a unified framework. A primary example is
the NVIDIA FLEX system [Macklin et al. 2014], capable of modeling
complex and varied physical phenomena in real-time by leveraging
modern GPU hardware.

Rods with volume.Within this technological landscape, of partic-
ular relevance to our work is the modeling of elastic “rods” [Kugel-
stadt and Schömer 2016; Spillmann and Teschner 2007; Umetani et al.
2014]. These models extend “ropes” by augmenting each segment
composing the rod with an orthogonal coordinate frame, hence
allowing the modeling of torsion on top of stretching/bending. Our
VIPER rods extend these formulations by accounting for volume
preservation, a phenomena not modeled by existing position-based
rod models. Many interesting phenomena require this constraint
(e.g. soft-bodies, fluids). For example, water is the largest constituent
of most animal tissues (≈ 80% in muscles) hence modeling quasi-
incompressible phenomena is of critical importance to achieve be-
lievable motion. We address this problem by adding a per-vertex
scaling degree of freedom – a measure of the local rod cross-section
– and optimizing for this quantity within the physics solve. Our
rod segments are hybrid surface representations, they are explicitly
parameterized by the position and scale/radius of their vertices, but
their surface is defined implicitly. This hybrid structure makes them
particularly well suited for efficient collision detection/resolution
[Green 2010].

Anatomical modeling. Such a physical model not only satisfies
our fixation in efficiently simulating rubber bands, but has imme-
diate applications towards the modeling of muscles. As illustrated
in Figure 2, striated skeletal muscles1 in human bodies can be rep-
resented as a collection of fibers surrounded by connective tissue
(i.e. fasciae). Simulating these muscle types efficiently is a funda-
mental problem, as they represent from 36% to 42% (according to
gender) of the average human body mass. In this paper, we propose
to efficiently model muscles as a structured collection of volume-
preserving rods. This newmodel can also be interpreted as a general-
ization of the static volumetric primitives in Implicit Skinning [Vail-
lant et al. 2013], where skin can then be efficiently modeled as a
triangular mesh sliding on an implicit iso-surface defined by our
fibers. The VIPER primitive is designed to be integrated with other
existing components to produce a complete character representation.
These include representations of the skeleton, fat, skin, etc.

Volumetric simulation. In the industry, volume-preserving sim-
ulation is typically performed by discretizing the interior of the
object with tetrahedra or using an approximating cage. However,
to the best of our knowledge, even modestly sized models require a
lengthy preprocessing (e.g. a large scale eigen-decomposition for
computing the deformation modes; see [Barbič and James 2005])
before real-time simulation becomes possible. For example, while
visually striking, computing the simulation in Figure 3 requires
a two-pass optimization ( 1○ muscle, 2○ skin). 1○ Muscles are dis-
cretized with 51k tets sharing 21k vertices, and each of their 4 steps
of simulation requires 3.2 seconds. 2○ Skin (78k vertices) is simulated
as cloth layered on top of fat (having 68k tets sharing 18k vertices),
where each of the necessary 4 substeps of simulation requires ≈ 35
seconds of compute. Overall, this cumulates to≈ 2.5 minutes of com-
pute/frame. Offline simulation can be exploited to learn sub-spaces,
which then enables dynamic deformations in real-time; see [Xu and
Barbič 2016]. However, once learnt, the dynamic behavior of the
model is “baked”. Clearly, this is an obstacle towards the ultimate

1From now on, we will refer to “striated skeletal muscle” simply as “muscles”.
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goal of truly interactive physics simulation, and, consequently, inter-
active modeling. The VIPER primitive not only allows the real-time
volumetric simulation of complex anatomical structures, but also
provides a viable alternative to cages as a compact control structure
for soft-body deformations.

Automatic fiber-bundlemodeling. Rod-based representations of
muscle fascia are not commonly available – typical asset databases
contain tetrahedral mesh models instead. While artists sometimes
model main characters to the level of interior muscles, this effort
is expensive and not justified for background characters. Thus we
also introduce a technique to convert existing assets with minimal
user intervention. Our solution builds fiber bundles by first creating
a set of slices through the muscle then performing an iterative
optimization to interpolate these slices with a given number of rods
such that they approximate the input surface well.

Contributions. Our fundamental contribution is the design of a
novel real-time physics engine for soft-body dynamics. Our system
presents several sub-contributions:

• We enrich position-based solvers by introducing a new volume-
preserving cosserat rods model and associated constraints.

• We demonstrate how these primitives, when assembled into
fiber-bundles, are effective in efficiently modeling muscles.

• We propose a technique for conveniently creating fiber-bundles
models from existing simulation assets.

• We introduce the use of VIPER rods as efficient deformation
proxies for soft-body deformation.

2 RELATED WORK

We overview the literature from different angles. We recap example-
based modeling frameworks that are commonly used in digital
production, as well as recent efforts towards the use of simulated
anthropomorphic models. We also review methods that attempt
to “emulate” them via geometric processes, and finally processes to
calibrate a given model to a target.

Example-based deformation. Digital characters are often mod-
eled via their skin (i.e. skinning), with no consideration of underlying
volumetric structures, often resulting in non-physically realistic ef-
fects such as the candy wrapper problem of (LBS) Linear Blend
Skinning [Jacobson et al. 2014, Fig.3]. While these artifacts can be
resolved [Kavan et al. 2007; Le and Hodgins 2016], skinning so-
lutions lack details such as tendons, muscle bulges, wrinkles, and
volume preservation. Example-based approaches such as (PSD) Pose-
Space Deformation [Kurihara and Miyata 2004; Lewis et al. 2000] and
BlendShapes [Lewis et al. 2014] interpolate artist-sculpted shapes
to emulate all these effects. However, “producing effects such as skin
sliding over underlying structures, or the collision effects visible parts
of the body press together, can require considerable skill and weeks to
months of sculpting depending on the required quality” [Yuen 2018].
Such data-driven models can be learnt from measurements for both
static [Loper et al. 2015], as well as dynamic [Pons-Moll et al. 2015]
humans, but they hardly generalize outside of their corresponding
training domains.

Physically-based anthropomorphic models. Physically-based
simulation of characters has a long history [Scheepers et al. 1997;
Sifakis et al. 2005; Terzopoulos and Waters 1990] but, due to its
high computational cost, it has only recently began to see practical
use. For skeletal muscle deformation, Lee et al. [2010] provides an
excellent overview of the field, in regards to which Saito et al. [2015],
with its ability to reach near-interactive runtime, can be considered
the state-of-the-art. Similarly to blendshape generation, training
data can be exploited to generate efficient low-dimensional simu-
lations [Bouaziz et al. 2014; Schumacher et al. 2012; Xu and Barbič
2016], enabling physically-based digital characters in production
settings [Clutterbuck and Jacobs 2010; Ziva Dynamics 2018]. A short-
coming of these methods is the requirement that the training set
encompasses samples of all configurations of the object/character
that that will be needed. Physically based approaches also permit
a decomposition into layers – skin, muscle, fat, and bones – en-
abling appropriate algorithms to be used for each. Highly relevant
to our work is the simulation of skin layered over volumetric primi-
tives pioneered by Li et al. [2013], and its realization in commercial
software [Vital Mechanics 2018], as well as other existing research
[Saito and Yuen 2017], industry [Ziva Dynamics 2018], and propri-
etary solutions [Clutterbuck and Jacobs 2010] to this complementary
problem. Recently, Romeo et al. [2018] proposed the use of PBD for
muscle simulation, but its ≈40s/frame of processing time makes it
unsuitable to interactive applications.

Nonphysically-based anthropomorphicmodels.Recent efforts
have been made to create alternative representations for sub-skin
volumetric models (i.e. representations of muscle, fat, and bones).
For example, Maya Muscle [Comet 2011] represents muscles via
NURBS that drive the skin via LBS, whose volume is artist-driven
in a PSD fashion. However, due to the explicit nature of NURBS,
collisions are expensive, hence the performance of the system does
not scale well in the complexity of the model. Rather than driving
skin via LBS, Implicit Skinning [Vaillant et al. 2013] lets it slide on
top of implicit surfaces via optimization. These surfaces are defined
by blending components that abstract entire body parts (i.e. union
of bone, muscle, and fat). In contrast to our work, note that this
model is purely kinematic (i.e. no physics). Another relevant class
of methods simplifies anthropomorphic components even further.
For example representing an entire arm as two tapered capsules
is advantageous for arm vs. cloth collision detection [Muller 2008,
Cloth/Collision]. Sphere-Meshes generalize these representations,
and have recently been used to approximate geometry [Thiery et al.
2013], and track its movement in real-time [Tkach et al. 2016].

Calibrating anthropomorphic (volumetric) models. Ali et al.
[2013] pioneered the transfer of anatomical structures from a tem-
plate to a target human via approximate deformation models of
soft tissues, and Zhu et al. [2015] calibrated these models from a
set of RGBD images capturing a human in motion. Analogously
to these method, physically inspired models [Saito et al. 2015] can
be calibrated to a set of 3D surface scans [Kadleček et al. 2016].
Of particular relevance to our method is the fiber estimation tech-
nique pioneered by Choi and Blemker [2013] employed in [Saito
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Fig. 4. (top) The parameterization of a VIPER rod, and its discretization. (left) Its rest configuration, and (right) a deformed configuration. [TODO: notation]

et al. 2015, Sec. 3.1.1]. While Saito et al. [2015] is interested in de-
riving the anisotropic deformation frame, we require an explicit
decomposition of the muscle in fiber bundles.

3 GENERALIZED ROD PARAMETERIZATION

Our physical model of Cosserat rods consists of a smooth parametric
curve in 3D space c(z) : [z0, z1] → R3. An orthogonal frame D(z) ∈
R3×3 is attached to every point c(z) ∈ R3 on the curve. The orthog-
onal frame D(z) = s(z)R(z) is a combination of a uniform scale s(u),
and an orthonormal matrix R(z) = [u(z), v(z),w(z)]; see Figure 4.
Note that our model generalizes classical elastic rods [Kugelstadt
and Schömer 2016; Spillmann and Teschner 2007], as in those mod-
els the scale is kept constant along the curve. As shown in Figure 4,
any point in the parametrized volume of the rod can be transformed
to the rest configuration by a function p̄(x ,y, z) :R3 → R3:

p̄(x ,y, z) ≡ p̄(q, z) = c̄(z) + s̄(z)R̄(z)q (1)

where q = [x ,y, 0]T is a point on a disc D(z) of radius r (z), aligned
with the xy plane, and centered at its center of mass. Similarly, a
second function maps the rod from parameterization to its deformed
configuration:

p(x ,y, z) ≡ p(q, z) = c(z) + s(z)R(z)q (2)

4 VARIATIONAL IMPLICIT EULER SOLVER

Our solver is based on the variational form of implicit Euler inte-
gration [Martin et al. 2011]. The physical model evolves through
a discrete set of time samples, with simulation step size h. At time
t the deformed volume is defined as pt (x ,y, z) and the velocity as
Ûpt (x ,y, z). The rest pose is defined as p̄(x ,y, z) = p0(x ,y, z). The
massm is assumed to be uniform over the rod. The sum of the exter-
nal forces is denoted as fext(x ,y, z). We will now drop the indexing
(x ,y, z) whenever possible to improve readability. We consider po-
sition dependent internal forces such that the sum of the internal
forces is

fint(x ,y, z) = − 1
2
∑
i∇p∥Wi (p, p̄)∥2

Ki , (3)

where Wi (p, p̄) is a potential energy function, and Ki is a stiffness
matrix which we assume to be uniform over the rod, and the no-
tation ∥x∥2

A means xTAx. We can then write implicit Euler as an

optimization describing the compromise between an inertia poten-
tial and the elastic potentials:

min
{ct ,st ,Rt }

∫ z1

z0

∬
D(z)

m
2h2 ∥pt − p̂t ∥2

2︸            ︷︷            ︸
iner t ia

+ 1
2
∑
i ∥Wi (pt , p̄)∥2

Ki︸                  ︷︷                  ︸
elast ic

dx dy dz (4)

With p̂t we indicate the inertial prediction for pt , i.e., its next position
in absence of internal forces:

p̂t = pt−1 + h Ûpt−1 +
h2

m fext, (5)

where Ûp(q, z) = Ûc(z) +
(
Ûs(z)R(z) + s(z) ÛR(z)

)
q.

Discretization. We discretize the curve in the parametrized do-
main using a set ofm + 1 points {z[0], . . . , z[m]} connected usingm
piecewise linear elements of length {l[1], . . . , l[m]}; see Figure 4. We
can approximate the curve integral by integrating over these piece-
wise linear elements using the midpoint rule. For the integration
we also define a set ofm midpoints {z[.5], . . . , z[m−.5]}. A point on
a midpoint cross section is then parametrized as:

p(q, z[j−.5]) = c(z[j−.5]) + s(z[j−.5])R(z[j−.5])q (6)

c(z[j−.5]) ≡
1
2
[
c(z[j−1]) + c(z[j])

]
(7)

s(z[j−.5]) ≡
1
2
[
s(z[j−1]) + s(z[j])

]
(8)

This is similar to the staggered grid discretization of previous work
[Grégoire and Schömer 2006; Spillmann and Teschner 2007], where
the frames R are stored at the midpoints. Contrary to previous ap-
proaches, our model also has a scale that we store at the endpoints
of the linear elements. We can now rewrite Equation 4 as:

min
{ct ,st ,Rt}

m∑
j=1

l[j]

∬
D(z[j−.5])

m
2h2 ∥pt − p̂t ∥2

2 +
1
2
∑
i ∥Wi (pt , p̄)∥2

Kidx dy (9)

5 ELASTIC POTENTIALS

In this section we detail the elastic potentials used to simulate our
volume preserving rods.

Strain potential. We define the strain at a midpoint as

Estrain(z[j−.5]) =
∬

D(z[j−.5])

∥RT ∇p − R̄T ∇p̄∥2
Ksdx dy, (10)

, Vol. 1, No. 1, Article . Publication date: October 2018. 2018-10-09 11:53. Page 4 of 1–13.



VIPER: Volume Invariant Position-based Elastic Rods • :5
fig

/s
ta
tic

+d
yn

am
ic
/

Fig. 5. Static behavior – We compare the deformation of a standard
cosserat rod to our volumetric invariant version. Our additional degrees
of freedom allow us to model the buckling (resp. bulging) caused by the
stretching (resp. compression) of the rod.

Fig. 6. Dynamic behavior – Our generalized rods do not only capture
static volumetric deformations, but the scale’s velocity allows us to model
volume dynamics. In this example, note the rod length is unchanged, but
our formulation models a volumetric shockwave travelling through the rod.

where Ks = [ kxs ex kys ey kzs ez ] is a diagonal stiffness matrix and
[ex eyez ] is the standard basis. ∇p and ∇p̄ denote the deforma-
tion gradients, i.e., the Jacobian matrices of the deformation func-
tions [Sifakis and Barbic 2012]. As p and p̄mapR3 toR3, the Jacobian
matrices are 3 × 3. The Jacobians are not rotational invariant so
we rotate them back to the parametrization domain to be able to
compare them on a common ground. As explained in Appendix A
integrating the strain energy (10) leads to

Estrain(z[j−.5]) = πr2kzs ∥∇zc −ww̄T ∇z c̄∥2
2 (11)

+ πr2(kxs + k
y
s )(s − s̄)2 (12)

+ 1
4πr

4(kxs + k
y
s )(∇zs − ∇z s̄)

2 (13)

+ ∥sΩ − s̄Ω̄∥2
Hs
, (14)

where Hs = [ π r 4kzs ex π r 4kzs ey π r 4(kxs +k
y
s )ez ] is the second moment

of area of a disc scaled by the stiffness, and theDarboux vector [Kugel-
stadt and Schömer 2016] is denoted by Ω = [Ωu ,Ωv ,Ωw ]T . Note
that we retrieved similar energies in previous works augmented
by our additional scale degree of freedom. The energies (11) and
(12) respectively measure the stretch along the curve and the cross
section, while (13) measures the variation of scale across sections,
and (14) measures bending/twisting. Interestingly, Equation 13 can
also be interpreted as a measure of surface stretch.

We use an additional energy measuring the second order variation
of scale complementing (13) with a measure of surface bending

Ebending(z[j−.5]) = 1
4πr

4
(
kxb + k

y
b

) (
∇2
zs − ∇2

z s̄
)2

(15)

where ∇2=∇ · ∇=∆ is the Laplacian operator. Note that this energy
can also been seen as an approximation of:∬

D(z[j−.5])

∥RT ∇2p − R̄T ∇2p̄∥2
Kbdxdy, (16)

where Kb =
[
kxb e

x kyb e
y kzb e

z
]
. This energy compares the Laplacians

of the deformation functions giving a second order measure of the
deformation.

Volume potential. By denoting the determinant with | · |, and
stiffness by kv , we define the volume preservation at midpoints as:

Evol(z[j−.5]) =
∬

D(z[j−.5])

kv (|∇p| − |∇p̄|)2 dx dy (17)

Note that the determinant is rotational invariant, hence it is not
necessary to rotate the Jacobians. As explained in Appendix A inte-
grating the volume energy (17) leads to:

Evol(z[j−.5]) = πr2kv ∥s
2∇zc − s̄2ww̄T ∇z c̄∥2

2 (18)

+ 1
2πr

4kv
(
s3Ωu − s̄3Ω̄u

)2
(19)

+ 1
2πr

4kv
(
s3Ωv − s̄3Ω̄v

)2
. (20)

6 OPTIMIZATION

To approach the non-linear optimization problem in (9), we lin-
earize the inertia and non-linear elastic terms, and then solve the
optimization iteratively in a Gauss-Newton fashion. To warm start
the optimization, we first compute a prediction step by ignoring the
elastic potentials and by solely minimizing the inertia term – this
simply provides an initial guess. We then compute a (set of) correc-
tion steps that also include the elastic potentials.

Prediction step. By denoting by θ the angles parametrizing the
rotation matrix and I is the second moment of area of a disc in
world-space, the predictions for the different degrees of freedom of
our model are computed as:

ĉ = c + hÛc + h2

π r 2m ξ ext, (center prediction) (21)

θ̂ = θ + h Ûθ + I−1h2

s2m τ ext, (frame prediction) (22)

ŝ = s + h Ûs + 2h2

π r 4mγext, (scale prediction) (23)

where ξ ext is the sum of the external forces which act on the disc,
τ ext is the sum of the external torques, and γext is a quantity which
can be seen as the counterpart of the total external torque measuring
the sum of the external forces projected on the position vectors;
see Appendix B for more details. Note that the center and frame
predictions are similar to the rigid-body equations of motion for a
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Fig. 7. Being built on VIPER primitives, our physics engine can simulate soft-body deformation and dynamic interactions between hundres of models in
real-time. A peculiarity of our engine is that both collision and simulation are executed on the same geometry; see our video in the additional material.

stretched disc. On top of these equations, we get a scale prediction
describing how the scale of the disc is affected by the velocity and
the external forces.

Correction steps. We then compute a set of correction steps in-
cluding both inertial/elastic terms. We define

X = [cT
[0], s[0],θ

T
[.5], c

T
[1], s[1],θ

T
[1.5], · · · ]

T (24)

as the vector containing all the degrees of freedom, and λ as the vec-
tor of Lagrange multipliers. K is a block diagonal matrix containing
the stiffness parameters multiplied by the length of the piecewise
elements, A is a block diagonal matrix stacking the inertia weights
multiplied by the length of the piecewise elements, and

W(X) = [W1(X),W2(X), · · · ]T (25)

stacks the potential energy functions. Denoting the iteration number
with k , the the state is then updated as Xk = Xk−1 + ∆X and
λk = λk−1 + ∆λ, where, as derived in Appendix C:

∆X = −h2A−1∇W(Xk−1)T ∆λ, (26)

∆λ=
(
h2∥∇W(Xk−1)T ∥2

A−1+K−1
)−1

W(Xk−1) − K−1λk−1. (27)

For realtime performance we opt for using an iterative linear system
solver such as block Jacobi or Gauss-Seidel. The update for the i-th
constraint is:

∆λi = β
(
h2∥Wi (X)T ∥2

A−1 + K−1
i

)−1 (
Wi (X) − K−1

i λi
)

(28)

where we dropped the superscripts to improve readability, and β is
a relaxation parameter. Note that A being a block diagonal matrix
with block of size at most 3×3,A−1 can be efficiently computed. Note
that Equation 28 is a generalization of the XPBD update [Macklin
et al. 2016] derived for our volume preserving rod model.

7 REAL-TIME PHYSICS ENGINE

We implemented our real-time solver on a GPU by leveraging the
Thrust framework provided by the CUDA library, which we execute
on a single NVIDIA GTX 1080 graphics card. In our engine, any
volumetric object is modeled as a collection of tapered capsule

primitives, or “pills” (for brevity), while the floor is represented as a
simple halfplane constraint. During simulation, at each time step,
we start by first animating kinematic objects (e.g. bones). We then
compute the inertial predictions, and perform collision detection
(Sec. 7.1) to generate collision resolution constraints (Sec. 7.2). We
then solve for all constraints using a Jacobi solver: constraints are
computed in parallel, and the resulting positional displacements are
averaged out by a reduction. The transformations of VIPERs can
then be skinned to any surface mesh model (Sec. 7.4).

Our model provides a viable alternative to cages as a compact con-
trol structure for soft-body deformations. We demonstrate this in
Figure 7, where we rigged a simple octopus character using rods,
and solve for collisions and soft-body deformations in real time.
As shown in the accompanying video, our non-optimized proto-
type achieves real-time performance (≈??ms sim, ≈??ms render) for
scenes containing up to 100 octopuses, each rigged with 37 pills,
whose deformation is skinned to a triangular surface mesh of ≈ 13k
faces. Note how for robust collision detection we need far fewer
pills than the volumetric particles used in Macklin et al. [2014].

7.1 Collision detection

To detect collisions between physical primitives, we adopt the ap-
proach presented by Green [2010] popularized in the context of GPU
particle fluid simulation. Towards this goal, we approximate each
pill by its bounding sphere, and (conservatively) detect collisions
to be later handled in the resolution loop detailed in Section 7.2.
Collisions are detected with the assistance of a uniform grid with
cell width chosen as the diameter of the largest bounding sphere,
such that collisions between spheres centered in non-neighboring
cells are impossible. Extending [Green 2010], we also count the
spheres in the neighboring cells of each particle, and use this in-
formation to construct in parallel a list of all potential collisions.
This is in contrast to the original algorithm which for each sphere
processes neighbors in series, and therefore degrades to a partially
serial algorithm in cases where many particles fall into a single grid
cell. Further details regarding this process are provided together
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Fig. 8. (left) An elastic band mesh and its VIPER discretization. (right) The VIPER simulation and their deformation “skinned” to rest-pose mesh.

with an executable 1D example in the form of a Jupyter notebook in
our additional material.

7.2 Collision handling

In a generic physics engine one would implement collision detec-
tion/response between any pair of available proxies. For the sake of
efficiency, in our framework we only tackle two collision proxies:
(kinematic) half-planes and (dynamic) pills. Within the combina-
torial set of collision pairs, the main challenge is pill-to-pill colli-
sions. In what follows, we first compute the meta-parameters of
the collisions, that are then resolved in the optimization via PBD
constraints [Müller et al. 2007].

Collision metadata. Given two pills Pa and Pb , each modeled as a
pair of spheres, for example, Pa = {(ca1 , r

a
1 ), (c

a
2 , r

a
2 )}, the fundamen-

tal queries we need to answer are: 1○ is there a collision? 2○ what is
the collision point/normal? 3○what is the inter-penetration amount?
As typical in efficient collision resolution, we introduce a single PBD
constraint modeling collision forces corresponding to the largest pill-
to-pill inter-penetration. In our solution, we leverage the geometric
structure of the problem: 1○ a pill can be interpreted as the union
of infinitely many spheres whose position and radii are linearly
interpolated between its endpoints; 2○ the largest inter-penetration
corresponds to the inter-penetration between any pair of spheres,
one in pill Pa and one in pill Pb . By first defining the LERP operator
asL(x1, x2,γ ) ≡ (1−γ )x1+γ x2, the interpolated sphere (c(γ ), r (γ ))
is derived by LERP’ing the endpoint quantities as c(γ ) = L(c1, c2,γ )
and r (γ ) = L(r1, r2,γ ). The largest inter-penetration is then given
by the solution of the bivariate optimization problem:

arg max
α,β

∥ca (α) − cb (β)∥2 − (ra (α) + rb (β)) (29)

Because a closed-form operator Πb (α) providing the barycentric
coordinate of the closest-point projection of a point ca (α) onto the
pill Pb is available (see Appendix D) we can further simplify this
problem into a scalar optimization problem:

arg max
α

∥ca (α) − cb (Πb (α))∥2 − (ra (α) + rb (Πb (α))) (30)

which we solve by Dichotomous Search [Antoniou and Lu 2007]
with a fixed number of iterations (set to 10 in our engine).

Collision constraints. Having detected a collision between two
pills Pa and Pb , and having computed α∗ (and hence β∗ = Πb (α

∗))
by solving (30), we can express a constraint that correlates radii and

positions on the two pills in order to resolve the collision in a least
squares sense:

Ecollision = ∥∥ca (α∗) − cb (β
∗)∥2 −

(
ra (α

∗) + rb (β
∗)
)
∥2
2 . (31)

7.3 Scale-invariant shape matching – “Bundling”

To represent more complex geometry than individual rods, such as
that in Figure 2, we can gather a collection of rods in a cross-section,
and introduce a constraint to explain their joint deformation. We
employ the assumption that muscle fibers in a muscle cross-section
contract isotropically. Indexing the rods in a cross-section by i , our
rod deformation model can be expressed as a similarity transform

Ti =

[
siRi ci
0 1

]
. (32)

As illustrated in Figure 9, for each muscle cross-section we define a
scale invariant shape-matching energy measuring the deviation of
the current rod deformations Ti from a global similarity transform
T∗ of the rest deformations T̄i as

Eshape =
∑
i

∥T∗T̄i − Ti ∥2
2 . (33)

We treat this energy as a hard constraint by finding the optimal
T∗ and setting Ti = T∗T̄i as a post-processing step after few iter-
ations. The optimal T∗ can be computed following the derivation
in [Umeyama 1991]. The optimal rotation R∗ can be found by solv-
ing

R∗ = arg min
R∈SO(3)

∥R − Σi [siRi ci − µ][s̄i R̄i c̄i − µ̄]T ∥2
2 , (34)

where µ = 1
n Σi ci . We compute the optimal rotation R∗ using the

robust approach presented in [Müller et al. 2016]. The optimal scale
can be computed as

s∗ =

∑
i sum(R∗[s̄i R̄i c̄i − µ̄] ◦ [siRi ci − µ])∑
i sum([s̄i R̄i c̄i − µ̄] ◦ [s̄i R̄i c̄i − µ̄])

, (35)

where sum(·) adds all entries of the matrix and ◦ is the Hadamard
product. Finally, the optimal translation can be derived as

c∗ = µ − s∗R∗µ̄. (36)

7.4 Skinning VIPERs to surface deformation

Our VIPER rods can also be employed as a volumetric proxy driving
the deformation of a surface mesh; see Figure 1 and Figure 8. In
particular, we blend the relative transformations between deformed

2018-10-09 11:53. Page 7 of 1–13. , Vol. 1, No. 1, Article . Publication date: October 2018.



:8 • Angles et al.

tra
di

tio
na

l
sh

ap
e-

m
at

ch
in

g
sc

al
e 

in
va

ria
nt

sh
ap

e-
m

at
ch

in
g

rest configuration
(and constraints)

fig
/s
ha
pe
m
at
ch
+c
on

tr
ac
t/

Fig. 9. Scale-invariant shape matching – Shape matching can recover a
rigidly transformed configuration, while our model allows for a null-space
that includes uniform scale. We employ this model as we work under the as-
sumption that muscle fibers in a muscle cross-section contract isotropically.
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Fig. 10. Muscle contraction – (top) Muscle at rest and its excitation (force
shortening edge lengths in an area) with traditional shape-matching con-
straints (middle) vs our novel scaled shape-matching constraints (bottom).

and rest pose configurations via linear blend skinning. To achieve
this, we utilize a modified version of the LBS weight computation
by Thiery et al. [2013]. In that paper, weights were computed by
fairing an initial assignment where each vertex was fully attached
to the nearest element. Instead, we modify this assignment to begin
with weights for each vertex that are proportional to the inverse
square-distance from the vertex to the surface of each pill. This
resolves cases where multiple surfaces are at equal distance, and
the nearest neighbor is multiply-defined. Further, when bundling is
employed (Section 7.3), we do not employ the rod frames, but rather
we employ the one provided by the optimization in Equation 33.

7.5 Energy implementation

The energies derived in Section 5 have been derived using con-
tinuous operators. To implement these energies we approximate
∇zc(z[j+.5]), ∇zs(z[j+.5]), and ∇2

zs(z[j+.5]) using finite difference
such that

∇zc(z[j+.5]) = l
−1
[j]

(
c(z[j+1]) − c(z[j])

)
, (37)

∇zs(z[j+.5]) = l
−1
[j]

(
s(z[j+1]) − s(z[j])

)
, (38)

∇2
zs(z[j]) = l

−1
[j]

(
s(z[j+1]) − s(z[j])

)
(39)

− l−1
[j−1]

(
s(z[j]) − s(z[j−1])

)
.

For simplicity of the derivations we used angles θ to parametrize
the rotation R . However, our implementation uses quaternions. For
small angles the corresponding quaternion is Q = [θ2

T
, 1]T . We

also use quaternions to represent rotations and approximate the
Darboux vector using

Ω(z[j]) = 4(l[j−1] + l[j])
−1 Im(Q̄[j−.5]Q[j+.5]), (40)

where Im(·) gives the imaginary part of a quaternion.

8 ANATOMICAL MODELING AND SIMULATION

We now describe how our rods can be used to model complex
anatomical structures such as bones and muscles; see Figure 1. For
the former, we use a simplified version of Thiery et al. [2013] where
only pill primitives are used – this primarily allows us to reduce
the complexity of the collision detection/resolution codebase. We
then detail the conversion of digital models of muscles into VIPERs
in Section 8.1, and describe a few nuances about the simulation of
their motion in Section 8.2.

8.1 Muscles to rods conversion – “Viperization”

We developed a (weakly-assisted) technique to convert a traditional
muscle model into a collection of K rods. As outlined in Figure 11,
our process involves several phases. We begin by computing a volu-
metric discretization of the muscle’s surface. We then ask the artist
to paint annotations on the surface marking the start (sources) and
the end (sinks) of the muscle. A harmonic solve alike the one de-
scribe in Choi and Blemker [2013] is the executed to compute a
field that smoothly varies in the [0, 1] range along the muscle’s
length. We then sampleM iso-levels of this field to be surfaces con-
taining theM vertices of each of the K generated VIPERs. Within
each iso-level we require: 1○ VIPERs to have the same radii, and
2○ to be distributed uniformly on the slice (iso-surface). To obtain
this, we perform a restricted centroidal Voronoi diagram of K points
on each slice [Botsch et al. 2010], while simultaneously penalizing
the length of each rod. We alternate this variational optimization
with a discrete one that re-assigns spheres to different rods in order
to minimize the sum of rod lengths. This process, which we refer
to as “combing”, starts from one end of the muscle, and executes in
orderM−1 instances of minimum-cost bipartite matching (which
we solve in polynomial time via the Hungarian algorithm), where
the pairwise costs are the K2 euclidean distances across rod nodes
in two adjacent slices. A few examples of the conversion process
are illustrated in Figure 1 and Figure 12.
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Fig. 11. The mesh-to-VIPER conversion process. Given source/sink con-
straints, we compute a harmonic function in the volume, and extract a few
discrete iso-levels. Within each of these, we execute a restricted CVD to
place 5 elements of the same radii on these surfaces. We then execute a
combinatorial optimization that connects samples across layers to produce
minimal length curves.
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Fig. 12. We illustrate several examples of the VIPERs extracted by our
automated process. For the pectoral, our VIPER model employs 8 rods,
each discretized by 8 elements. In comparison, the surface meshes by ZIVA
contain ( |∂V | = 1584, |∂F | = 3164) on the boundary and its (volumetric)
simulation mesh contains ( |V | = 350, |T | = 1089) tetrahedral elements.
Where ∂ ≡ “boundary”, F ≡ “faces”, V ≡ “vertices” and T ≡ “tetrahedra”.

8.2 Muscle simulation

Once a muscle is viperized as described in Section 8.1, rod cen-
ters within the same cross-section are connected via the bundling
constraints in Equation 33. Every rod also obeys the constraints
described in Section 5. The endpoints of rods are kinematically at-
tached to bones, and intra-muscle collisions are disabled, while inter-
muscle collisions are detected and resolved as described respectively
in Section 7.1 and Section 7.2. Muscles can also be excited/contracted
by inserting internal forces, or even simply shortening the length of
fibers (while preserving volume) resulting in the bulging effects il-
lustrated in Figure 10. Lo -What about: Muscles can also be activated
(fiber contractions generating a stronger force, producing a change
of shape at constant muscle length and volume) by inserting internal
forces, or even simply shortening the length of fibers resulting in
the bulging effects illustrated in Figure 10. We also speed-up the
solver convergence during fast motion by exploiting the availability
of bone transformations. In more detail, each muscle particle has
two skinning weights corresponding to the two bones the muscle is
attached to. At the beginning of each frame we use the transform
of each bone relative to their last frame’s transforms to initialize
the displacement of the particle using LBS, and later refine this via
simulation.

9 CONCLUSIONS & FUTURE WORK

In this paper, we introduced a novel formulation of cosserat rods
that considers local volume, and optimizes for its local conserva-
tion. The resulting position-based simulation is highly efficient,
and is straightforward to implement on graphics hardware. We
demonstrated how rod-bundling is a powerful representation for
the modeling of volumetric deformation – and in particular for skele-
tal muscles. Rather than requiring artists to model from scratch, we
also introduced an algorithm to procedurally generate VIPERs with
minimal user interaction. Finally, by coupling the rod simulation to

a surface mesh via skinning, our model can be thought of as a direct
alternative to tetrahedral meshes and cages for real-time non-rigid
deformation. Most importantly, our generalized rods formulation
opens up a number of venues for future work, which we classify in
three broad areas, as elaborated below.

Model generalization.While in our rods we discretized the skele-
tal curve with piecewise linear elements, it would be interesting
to investigate whether the use of continuous curve models such as
splines would be tractable – from both mathematical, as well as
implementation standpoints. Similarly to [Müller and Chentanez
2011; Müller and Chentanez 2011], our model could also be extended
to model anisotropic volume deformations, that is, both the rest pose
and deformed rod could have a non-circular cross section. Further,
while in this paper we treated the modeling of non-circular cross-
sections via bundling, the theory of medial axis [Tagliasacchi et al.
2016] tells us how any geometric object can be approximated via
primitives formed as the convex-hulls of three-spheres –what Tkach
et al. [2016] called “wedges”. Extending our volume-invariant rods
models to volume-invariant wedges would provide an elegant gen-
eralization of our modeling paradigm.

Anatomicalmodeling.As highlighted by our supplementary video,
rod primitives can be exploited for the efficient approximate model-
ing and simulation of complex structures. Nonetheless, the dynamics
of the human body are the result of the complex interplay between
muscle, fat, and the consequent deformation of skin. Enriching our
model to also account for these factors would be an interesting
extension. For example, rather than driving the muscle surface via
skinning as in Section 7.4, one could represent a muscle as a con-
trollable implicit blend [Angles et al. 2017], approximate fat as an
elastic offset between muscles and skin, and simulate skin as an
elastic surface whose vertices lie on a (potentially) user-controlled
iso-level of the implicit function. Further, while artistical editing of
physically driven anatomical systems can be a difficult due to the
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complexity of simulation, our framework could immediately enable
interactive modeling, in a similar fashion to what ZBrush/ZSphere
currently provides for authoring static geometry. By extending the
works in [Tkach et al. 2016, 2017], an efficient anatomical model for
a particular user could also be constructed by fitting to RGBD data.

Optimization.Our solver has not yet directly leveraged the straight-
forward multi-resolution structure of rod geometry. More specifi-
cally, the curve parameterization of rods offers a domain over which
designing prolongation/restriction operators needed for a geometric
multi-grid implementation becomes straightforward. An orthogonal
dimension for optimization would be to consider the existence of
multi-resolution structures within the cross-sectional domain; see
Figure 2. This could both be exploited in offering multi-scale inter-
action for artists in editing our rod models, as well as to produce
level-of-details models for efficient simulation at scale. Finally, while
we employed out-of-the-box geometry processing tools to convert
a triangular surface mesh into a rod model, we believe fitting a
fiber-bundle model to a given solid could be achieved without the
(often finicky) conversion to volume/tetrahedral mesh, but rather
as a direct optimization over fiber placements.
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A ELASTIC POTENTIALS

Strain. As defined in Section 5 we can write the strain energy as

Estrain =
∬
D

∥RT ∇p − R̄T ∇p̄∥2
Kdxdy, (41)

where we drop the subscript from K for brevity. This equation can
be extended as∬

D

∥RT ∇(c + sRq) − R̄T ∇(c̄ + s̄R̄q)∥2
Kdxdy, (42)

where

RT ∇(c + sRq) = RT (∇c + ∇sRq + s∇Rq + sR∇q), (43)

= RT ∇c + ∇sq + sRT ∇Rq + s∇q. (44)

We can derive the gradient operator for each part of this summation
leading to

RT ∇c =
[
0 0 RT ∇zc

]
=

[
0 0 0
0 0 0
0 0 wT ∇z c

]
, (45)

∇sq =
[
0 0 ∇zsq

]
=

[
0 0 ∇zsx
0 0 ∇zsy
0 0 0

]
, (46)

sRT ∇Rq =
[
0 0 sΩ×q

]
=

[ 0 0 −sΩwy
0 0 sΩwx
0 0 sΩuy−sΩvx

]
, (47)

s∇q =
[
sex sey 0

]
=

[ s 0 0
0 s 0
0 0 0

]
, (48)

where Ω = [ΩuΩvΩw ]T is the Darboux vector; and analogous
expressions can be derived for ∇p̄. We can now observe than (41)
can be broken up into the sum of distinct energies

Estrain =
∬
D

kz (wT ∇zc − w̄T ∇z c̄)2 (49)

+∥(∇zs − ∇z s̄)q∥2
K (50)

+∥(sΩ − s̄Ω̄) × q∥2
K (51)

+(kx + ky )(s − s̄)2dxdy, (52)

as the cross terms evaluate to 0. After integrating over the disc we
can reformulate (49) as

Estrain = πr2kz ∥∇zc −ww̄T ∇z c̄∥2
2 (53)

+
π r 4(kx+ky )

4 (∇zs − ∇z s̄)
2 (54)

+ ∥sΩ − s̄Ω̄∥2
H (55)

+ πr2(kx + ky )(s − s̄)2, (56)

where H =
[
π r 4kz ex

4
π r 4kz ey

4
π r 4(kx +ky )ez

4

]
is the second moment

of the area of a disc scaled by the stiffness.

Volume. As defined in Section 5 we can write the volume energy
as

Evol =
∬
D

k(|∇p| − |∇p̄|)2dxdy (57)

=

∬
D

k(|RT ∇p| − |R̄T ∇p̄|)2dxdy, (58)

Based on the strain derivation, the determinant can be computed as

|RT ∇(c + sRq)| = |

[
s 0 ∇zsx−sΩwy
0 s ∇zsy+sΩwx
0 0 wT ∇z c+sΩuy−sΩvx

]
| (59)

= s2wT ∇zc + s3(Ωuy − Ωvx). (60)

We can now integrate over the disc leading to

Evol = πr2k ∥s2∇zc − s2
p̄ww̄T ∇z c̄∥2

2 (61)

+ π r 4k
2 (s3Ωu − s̄3Ω̄u )2 (62)

+ π r 4k
2 (s3Ωv − s̄3Ω̄v )2. (63)

B PREDICTION STEP

As described in (9), the inertial potential over the disc is of the form

Einertia =
∬
D

m
2h2 ∥pt − p̂t ∥2

2dxdy. (64)

We aim at finding the unknowns xt = [ cTt st θTt ]
T that minimize

(64) giving us the prediction update. We denote by θ the angles
parametrizing the rotationmatrix. Because the deformation function
pt is non linear, i.e., due to the rotational degrees of freedom, we
rely on a Gauss-Newton iterative scheme for the minimization. We
linearize (64) at xkt leading to

arg min
∆xkt

∬
D

m
2h2 ∥A∆x

k
t − b∥2

2dxdy, (65)

where k is the iteration number, and ∆xt = [ ∆cTt ∆st ∆θTt ]
T . At

each iteration we minimize (65), and then apply the update xk+1
t =

xkt + ∆xkt , where we initialize x0
t = xt−1. The matrix A can be

written as A = [ I3×3 Rkt q −skt [R
k
t q]× ], where [·]× is a cross product

skew-symmetric matrix. The vector b is defined as b = pt−1 +

h Ûpt−1 +
h2

m fext − pkt . To compute the prediction updates we will
use a single iteration of Gauss-Newton so b = h Ûpt−1 +

h2

m fext as
p0
t = pt−1. We will now drop the superscripts and the subscripts to

improve readability. As Equation 65 is quadratic we can be find its
minimum by solving the normal equation

©­«
∬
D

m
h2 A

TAdxdyª®¬∆x =
∬
D

m
2h2 A

T bdxdy. (66)

Interestingly, the left hand side
∬
D

m
2h2 ATAdxdy can be simplified

to a block diagonal matrix of the form
∬
D

m
2h2 I3×3dxdy 0 0

0
∬
D

m
2h2 (Rq)T (Rq)dxdy 0

0 0
∬
D

ms2

2h2 [Rq]T× [Rq]×dxdy


, (67)

by noticing that [Rq]T×(Rq) = 0. Moreover, as the center of mass of
the disc is placed at the origin

∬
D

mRqdxdy = 0 and
∬
D

m[Rq]× = 0.
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We can now integrate the diagonal elements leading to
π r 2m
h2 I3×3 0 0

0 π r 4m
2h2 0

0 0 ms2

h2 I

 , (68)

where I = R
[
π r 4

4 ex π r 4

4 ey π r 4

2 ez
]
RT is the second moment of

area of a disc in world-space. The right hand side
∬
D

m
h2 AT bdxdy

can be simplified as 
π r 2m
h Ûc + ξ ext

π r 4m
2h Ûs + τ ext

ms2I
h

Ûθ +γext

 , (69)

where ξ ext =
∬
D

fextdxdy is the sum of the external forces which

act on the disc, τ ext = s
∬
D
(Rq) × fextdxdy is the sum of the external

torques andγext =
∬
D
(Rq) · fextdxdy is a quantity which can be seen

as the counterpart of the external torque by measuring the external
forces applied along the center direction.

Center update. By solving the linear system (66) for ∆c we find
the prediction update for the center

∆c = hÛc + h2

π r 2m ξ ext, (70)

As we integrate on a disc located at a midpoint this update is valid
for the center of the disc located at this point. We approximate the
update over the end points by using the same update rule.

Scale update. Similarly, the scale update can be computed solving
the linear system for ∆s leading to

∆s = h Ûs + 2h2

π r 4mγext, (71)

We also approximate the update over the end points using the same
update rule

Frame update. The frame update can be computed by solving the
linear system for ∆θ leading to

∆θ = h Ûθ + I−1h2

s2m τ ext. (72)

C CORRECTION STEP

Inertia approximation. From the derivation in Appendix B we
can obtain an approximation of the inertia term as

Einertia ≈ π r 2m
2h2 ∥ct − ĉt ∥2

2 +
π r 4m

4h2 (st − ŝt )
2+ s2m

2h2 ∥θ t − θ̂ t ∥
2
I
, (73)

where

ĉt = ct−1 + hÛct−1 +
h2

π r 2m ξ ext, (74)

ŝt = st−1 + h Ûst−1 +
2h2

π r 4mγext, (75)

θ̂ t = θ t−1 + h Ûθ t−1 +
I−1h2

s2m τ ext, (76)

are the inertial predictions for the different degrees of freedom. The
variational form of implicit Euler (9) can then be written in the form

min
X

1
2h2 ∥X − X̂∥2

A +
1
2 ∥W(X)∥2

K, (77)

where X =
[
cT
[0],s[0],θ

T
[.5],c

T
[1],s[1],θ

T
[1.5], · · ·

]T and X̂ are vectors contain-
ing all the degree of freedoms and their predictions, K is a block di-
agonal matrix stacking the stiffness parameters scaled by the length
of the piecewise elements, A is a block diagonal matrix stacking the
inertia weights scaled by the length of the piecewise elements, and
W(X) = [W1(X) W2(X) ... ]T stacks the potential energy functions.

Variational Solver. To solve this optimization we can linearize the
elastic potentials and write an iterative Gauss-Newton optimization

min
∆X

1
2h2 ∥X

k−1+∆X−X̂∥2
A+

1
2 ∥W(Xk−1)+∇W(Xk−1)∆X∥2

K, (78)

where k is the iteration number, Xk = Xk−1 + ∆X, and we initialize
X0 = X̂. Since Equation 78 is quadratic in the unknown ∆X, we can
minimize it with a single linear solve
A
h2 (X

k−1+∆X−X̂)+∇W(Xk−1)TK
(
W(Xk−1) + ∇W(Xk−1)∆X

)
=0.

However, the conditioning of this linear system is greatly dependent
on how stiff are the elastic potentials. Following the optimization
trick presented in [Gould 1986], for elastic potentials with large
stiffness a better option is to split the equation above as{

A
h2 (X

k−1 + ∆X − X̂) + ∇W(Xk−1)T λk = 0, (79)

K−1λk =W(Xk−1) + ∇W(Xk−1)∆X. (80)
Note that when the elastic potentials are infinitively stiff K−1 van-
ishes λ = [λ1, . . . , λn ]T becomes the vector of Lagrange multipliers.
We can now reformulate (79) as

∆X = −h2A−1∇W(Xk−1)T λk − (Xk−1 − X̂) (81)

≈ −h2A−1∇W(Xk−1)T ∆λ, (82)

by assuming ∇W(Xk ) ≈ ∇W(Xk−1), and where λk = λk−1 + ∆λ
and we initialize λ0 = 0. This can be proven by induction knowing
that X0 = X̂ and λ0 = 0. By substituting ∆X in the Equation 80, we
can rewrite the system of equations as{

∆X = −h2A−1∇W(Xk−1)T ∆λ,

(h2∥∇W(Xk−1)T ∥2
A−1 + K−1)∆λ =W(Xk−1) − K−1λk−1.

Therefore, ∆X and ∆λ can be found with a single linear solve.

D CLOSED FORM PILL PROJECTION

Given a pill P = {(c1, r1), (c2, r2)}, we can compute the closest point
distance of a point x onto P in close form as

d = ∥x − c1 + t ĵl ∥2 − ((1 − t)r1 + tr2) (83)

where l = ∥c1 − c2∥2 is the pill length, ĵ = l−1(c1 − c2) is the
pill versor, ps = c1 − ĵ

(
(x − c1) · ĵ

)
the orthogonal projection onto

the pill segment, θ = arcsin(l−1(r1 − r2)) is the pill slope angle, and
t = min(max(−l−1(ps +oĵ−c1) · ĵ, 0), 1) is the barycentric coordinate
of the projection, where o = ∥x − ps ∥2

2 tan(θ ).
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