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Pose Space Deformation is described in a Siggraph 2000 paper (a .pdf is probably
located in the same place where you found this). This document gives some additional
notes and implementation considerations.

Pose Space Deformation (PSD) is a simple algorithm (the core engine can be imple-
mented in a few dozen lines of code) that combines aspects of skinning and blend-shape
approaches to deformation, and offers improvements and additional control. The basic
idea is to think of skin movement, not as a function of time, but as a function of the
creature’s pose.

PSD allows you to move the creature to any pose and resculpt the skin surface in
that pose. The sculpted alteration is smoothly (rather than linearly) interpolated as the
creature moves to and away from that particular pose. Because the edits can occur
at any pose, the underlying interpolation problem is one of scattered interpolation, as
opposed to interpolation schemes such as splines that assume the data are situated on
a regular grid. There are a number of scattered interpolation algorithms that could be
considered. Among these, Radial Basis Functions are simple, and have a variety of
extensions that can be explored.

Lastly, the concept of “pose” can be more generally considered, to include abstract
variables such as the amount of weight being carried or the character state (super-hero
mode or Clark Kent), as well as the literal relative joint angle variables that define the
pose.

Dimensionality

J. Blinn commented in one of his CG&A columns that humans are particularly bad at
switching between coordinate systems. Pose space deformation can be confusing in
that there are several different “spaces” and dimensionalities involved: the dimension-
ality of the pose space, the dimensionality of the model, and the number of training
examples (as well as the “3D” space of the resulting model). In PSD these dimension-
alities can all be different. This section will explain these several spaces, starting from
simple examples.

The first step is to temporarily forget about the ideas of 2D and 3D. Mathematically,
a “dimension” is anything that can be varied. A slider is one “dimension”. A single



vertex has three variables (x,y,z), and so is a point in 3 dimensions. Similarly, a triangle
on a 2D plane is defined by three vertices each with two coordinates, and so such trian-
gles can be considered as points in 6 dimensional space. In general, add up the number
of variables, consider each as a dimension, and consider objects with that number of
variables to be points in a space with that many dimensions.

Thus, if a face model has 10,000 vertices, each with 3 coordinates, then a set of 60
sculpted faces (e..g. blendshape targets) of this resolution will be considered as 60
points in 30,000 dimensional space.

As a first example, consider an animation of a face aging over time. Use 5 keyframes:
baby, child, teen, adult, old, and interpolate over these five in the time direction. In this
example, the “pose space” is one dimensional (time), the number of training examples
is 5 (the keyframes), and the dimensionality of the models is 30,000.

This is a standard sort of setup in computer graphics and the interpolation can be ac-
complished with splines without requiring and scattered interpolation and pose space.
To make it more interesting, consider changing the pose space to be two-dimensional.
As dimensions, use two sliders, one being “happy-sad” and the other being “low/high
energy”. As shown in the circomplex psychology research showin in the paper, this
2D space is an appropriate space for interpolating emotions – for example, “bored” has
the energy slider set to low, and has the happy-sad slider slightly on the sad side. To
restate, in this example the “pose space” is two dimensional, and the dimensionality of
the models is 30,000, and the number of training examples is the number of sculpted
face model targets that you place in the space. The models can be placed at arbitrary
points in the space – position the sliders, and put the model there. It will be smoothly
interpolated.

Next consider a blendshape-like setup. Suppose there are 60 blendshape targets, each
with 30k dimensions (as above). There are also 60 sliders. In PSD terms, this would
be considered as a 60-dimensional pose space, with 60 training examples. With blend-
shapes, the number of targets dictates the dimensionality of the space in which they
are interpolated, and the targets must be placed exactly along a single dimension, that
is, the target corresponding to the 4th slider will be at the location 0,0,0,1,0,0,0,.....
in the 60d (pose) space. Mathematically, the targets are placed at the vertices of a
60-D hypercube, and the neutral is at the origin. (Maya and probably other systems
allow intermediate targets to be placed along a particular slider, so one could have an
intermediate target at 0,0,0,0.5,0,0,0,.. as well as at the 1 position on that dimension).

Pose space generalizes this setup by breaking the link between the dimensionality im-
posed by the sliders (the dimensionality of the pose space) and the number of sculpted
targets. There can be any number of sculpted targets, and they can be placed anywhere
in the space. Further, they can be smoothly (rather than linearly or “hyper-linearly”)
interpolated. Thus, one might start off by doing 60 standard targets (61 counting the
neutral). Then, supposing that sliders 2 and 5 “fight”, and the interference is worse
at position 0.7 and 0.3 on these sliders. Put those sliders at that position, resculpt the
model, and associate that target with position 0,0.7,0,0,0.3,0,0,... in the pose space.



PSD

In the region near an elbow, the skin is affected by the relative angle between the upper
and lower arm “bones”. The relative angle is one value, so this is a one-dimensional
pose space. This is a bit too simple to be interesting, so we’ll talk about a shoulder
instead.

In the shoulder case, the pose space has two dimensions, these being the angles between
the upper arm (with 2 degrees of rotation) and the torso coordinate system. (Actually,
for a very realistic pose-based deformation these two angles may not be enough; it
might the upper arm, a “collar” type bone, and maybe some bones on the back. But
let’s just consider the two angles).

First the modeler will pose the creature, and at one or more particular poses they decide
to resculpt the surface. The resculpted surface (call it a PSD target) is saved, associated
with that pose. Probably, the model has some underlying skinning or stitching applied
that serves to keep it from cracking at the joints when the model is moved, but fails to
produce a realistic deformation. Call this the underlying surface. When the modeler
resulpts the surface, at each vertex the displacement from the underlying surface to the
resulpted surface is saved. The deformation is expressed in the local coordinate system
of the body part (upper arm or torso).

Suppose that the modeler decides to make PSD targets (adjustments) at three different
poses. The vertices that are moved may be different in each of these three poses. Thus,
vertices fall into several classes:

• vertices not changed by any of the PSD targets

• vertices changed by only one of the three PSD targets

• vertices changed by two of the three PSD targets

• vertices changed in all three of PSD resculpting operations

Thus, in the most general and flexible scheme, one should think of setting up and solv-
ing the PSD at the vertex level, not at the surface level. (2004 added note: the Weighted
PSD scheme is actually a better approach, see the section later in this document).

(While the weights will be different at every vertex, the “PHI’ matrix is common to a
particular class of vertices... so its inverse could be computed once rather than once at
each vertex in the class. The inverse operation happens at modeling time rather than at
animation time, and the inverse involved is small, so this isn’t a huge cost anyway - it’s
probably easiest to just treat every vertex independently).

For a particular cv the modeler makes corrections at 3 different poses. Then the length
of d is 3.

In the case of the 3d model there are 3 ”d” vectors, one for each of x,y,z.

so call Ri = PHI inverted, then



// solve for weights
wx = Ri * dx weights for x, given x component of the N displacements
wy = Ri * dy
wz = Ri * dz

// synthesize
dx = sum of wx[k] * PHI( |pose[current] - pose[k]| ) sum over k=1..N
dy = sum of wy[k] * PHI( |pose[current] - pose[k]| )
dz = ...

where pose is a 2d location pose(angle1, angle2), so —pose1-pose2— is

sqrt( (pose1[angle1]-pose2[angle1])ˆ2, (pose1[angle2]-pose2[angle2])ˆ2 )

// lastly,
point[X] += dx; point[Y] += dy; point[Z] += dz;

Kurihara and Miyata’s weighted PSD

Kurihara and Miyata showed an incredible animated hand, produced semi-automatically
from cat scans.

their video

http://www.eg.org/EG/DL/WS/SCA/SCA04/357-365.pdf.abstract.
pdf paper abstract

Their Weighted PSD (WPSD) scheme introduced a major improvment: in forming
”distance” in the pose space, they consider the underlying ”SSD”/skinning weights -
so if a vertex has only a small weight to a particular bone, that dimension does not
contribute much to the distance.

They also normalize the RBF weights to sum to one. I do not follow the logic of
this normalization, in that: far from any of the sculpted poses it would seem to cause
whichever is the nearest (albeit far) example/sculpt/model to be fully on, rather than
having the examples decay to zero far from their locations in pose space. However,
given that the results look good, maybe there is some reason why the normalized RBF
weights are a good thing.

Layering PSD on an existing skinning system

PSD can be used to improve upon an existing skinning system, by interpolating sculpted
adjustments to the underlying skinning.

In this case, arguably the quality is improved if one switches the order of operations
from

http://www.eg.org/EG/DL/WS/SCA/SCA04/MM/357-365/demo.avi
http://www.eg.org/EG/DL/WS/SCA/SCA04/357-365.pdf.abstract.pdf
http://www.eg.org/EG/DL/WS/SCA/SCA04/357-365.pdf.abstract.pdf


PSD(SSD(model), corrections)

to

SSD(model + PSD(corrections2))

where ”corrections” are what the animator sculpts, and ”corrections2” are some other
displacements that produce the same effect when passed through SSD().

Here’s a description of how the Powell’s method could be used to effect this change of
order

s = the sculpted (moved) vertex
p = the orignal vertes
d = the movement by the user

s = SSD(p) + d = SSD(p+e)

we want to find e (e=corrections2). This can be setup as a minimization problem,

minimize(e): | s - SSD( p+e ) |ˆ2

so, the function to minimize is

f(e) = | s - SSD( p+e ) |ˆ2

if this f() can be expressed as computer routine (that calls Maya to get the value of
SSD()), then this f() can be given to the Powell method to find the minimum of e.

In the case of pure SSD() it is possible to find the inverse directly, however in the
”Maya” situation where

1. the skinning is a somewhat unknown algorithm,

2. the skinning process is user-adjustable and the particular rig may have other
components such as blendshapes, lattices,...

this general approach makes more sense.

See Xiao Xian, et al, A Powell Optimization Approach for Example-Based Skinning in
a Production Animation Environment, Computer Animation and Social Agents (CASA
2006) for further details and an illustration of why the SSD-last ordering is preferable.

http://scribblethink.org/Work/PSD/Related/casa_final.pdf


Other related approaches

The origins of PSD are in an an approach I developed at ILM in 1995. That system was
used briefly in Jumanji (in the elephant-walks-over-car hero shot), and in Casper (it was
used to animate the dress in a scene where the fat ghost was dancing). ILM obtained
a patent on this approach in 1999. Compared with PSD, the this earlier approach used
a primitive form of scattered interpolation, and overall the interpolation was poorly
conceived. On the other hand, it did “invert” the skinning to do the interpolation in the
local space.

“Verbs and adverbs” interpolate motion of skeletons using RBFs (with added linear
trends). This paper really should have been cited by our 2000 Siggraph paper – however
I was working in production at the time and was not aware of it until later (in production
one has trouble keeping up with the academic literature, or anything else in life...).

Shape-by-Example is a technique presented by Sloan, Rose, and Cohen at the 2001
I3D conference; their technique has some broad similarities to PSD. Shape by example
interpolates shape using RBFs with linear added trends. However, they seem to be
interpolating the shape itself, rather than a delta from an underlying skinning system.

A quick analysis suggests that their technique requires less computation at the author-
ing stage but is slower at runtime synthesis: Shape-by-example deforms a point as

x[j](p) =
∑

k

∑
m

xk[j]rm,kR(p)

whereas PSD is
x[j](p) =

∑
k

wkR(|p − pk|)

Since the sqrt involved in the distance can be folded into R, PSD deformation appears
to be more efficient.

The shape-by-example paper has some tips on improving RBF interpolation. One of
these improvements is arguable for the purpose of skinning however: they fit a poly-
nomial (e.g. linear) trend under the RBF deformation (as is commonly done in RBF
implementations of thin-plate splines). This is not always desirable, because it means
that a sculpted deformation does not die off far away from the original pose, but instead
continues to grow.

Regularization

If several of the sculpted poses are very similar then the matrix R can be close to sin-
gular. There is an easy and effective approach to dealing (known by several names
including regularization, ridge regression, etc.). This technique is useful in other situ-
ations too.

As motivation/background,) When two rows of a matrix are similar, the data can be
”explained” by setting the weight on one of the rows to zero, or by setting each to half



of the needed weight, or by having one of the weights be huge and offset by a large
negative weight on the other row. This last scenario is undesirable of course.

In general this would mean that your selection of basis functions is poor, and the model
should be understood better. In the PSD case however the user chooses the “basis func-
tions” (sculpted poses) and you (the programmer) has no control over what is chosen.

Regularization is an adequate solution in this case: Add a soft constraint that votes for
the weights to be not too large. i.e., minimize

e = (Rw − d)2 + λw′w

(’ = transpose, so w′w = ||w||2) w=the weight vector, λ is a small user-defined scalar
like 0.01.

Taking derivative with respect to the weights gives a nice result:

de/dw = 0 = 2R′(Rw − d) + 2λw

R′Rw − R′d + λw = 0
(R′R + λI)w = R′d

w = −(R′R + λI)−1R′d

so in practice you can just add a small constant like 0.001 to the diagonal before invert-
ing. There is some further analysis (which I forget for the moment) that points out that
when a diagonal element of R’R is already large (corresponding to an element of w
that will turn out small) then adding 0.001 to that diagonal element affects things little,
but when the diagonal element is small (and the corresponding element of w would end
up being huge), adding 0.001 will make a big difference. So this selectively affects the
problematic weights much more than others.

The 0.01 should be a user-adjustable parameter. I’m not sure how to explain to the
users what it means!

Different RBF kernel widths at different points

This can be implemented simply. In the matrix instead of having

[R(1,1), R(1,2), ...;
R(2,1), R(2,2), ...

...]

where R(1,2) means the rbf kernel R() indexed by the distance between points 1,2, one
would have

[R1(1,1), R2(1,2), ...;
R1(2,1), R2(2,2), ...

...]



where R1() is the rbf kernel scaled for the width at point one.

Other Implementation extensions

Some of the various possible extensions (different basis shapes, kernels not located at
data points, etc.) are useful in implementations. The Bishop book Neural Networks
for Pattern Recognition (Oxford) cited in the paper is a good introduction; also see
F. Girosi’s paper “On Some Extensions of Radial Basis Functions and their Applica-
tions in Artificial Intelligence”. The paper

Reconstruction and Representation of 3D Objects with Radial Basis Func-
tions J. C. Carr, R. K. Beatson, J.B. Cherrie T. J. Mitchell, W. R. Fright,
B. C. McCallum and T. R. Evans ACM SIGGRAPH 2001, Los Angeles,
CA, pp67-76, 12-17 August

is another good reference; it describes fitting RBFs to data sets containing millions of
points.

There are a number of papers on techniques for adapting the kernel shapes and locations
to the data, e.g.

St. de Marchi, Schaback, and Wendland, Optimal Data-independent Point
Locations for Radial Basis Function Interpolation.

Tutorial Java language libraries for two-dimensional scattered interpolation are avail-
able at

scribblethink.org/˜zilla/Work/PSD/

(translation to C++ should be straightforward).

There are two routines. A Gaussian RBF routine has the constructor

public RbfScatterInterp(double[][] pts, double[] values, double width)

where pts are the 2-D locations with data, values are the values at those locations,
and width is the width of the Gaussian kernel. A Thin-Plate RBF routine has the
constructor

public RbfThinPlate(double[][] pts, double[] values)

This routine does a thin plate + affine fit to the data. The thin plate minimizes the
integrated second derivative of the fitted surface (approximate curvature).



In fact any radial kernel different than a linear function will work, so one can choose a
smooth piecewise polynomial for efficiency, or store the kernel in a precomputed table.
It is often desirable that the interpolated function decay to zero far from the data, which
is not true of the thin-plate interpolation. The affine component of the thin-plate code
is useful; this should be incorporated in the Gaussian RbfScatterInterp routine.

Both routines implement the interface

public interface ScatterInterpSparse2
{
float interp(float x, float y);

}

as the call to actually perform the interpolation.

For the character deformation application one needs M-dimensional interpolation of
3-dimensional CVS, for arbitrary M depending on the number of joints and other qual-
ities. This can be accomplished using 3 separate M-to-1 dimensional interpolations.
The extension of the interpolation code from 2-D to M-D requires changing the dis-
tance function from x2+y2 to an appropriate distance between points in M-dimensional
space.

PSD versus Shape Interpolation
Blend shapes or shape interpolation (SI) has several drawbacks:

• Shapes are not independent. A major consideration in designing face models for
shape interpolation is finding sets of shapes that do not “fight” with each other.

Animators describe this common problem with shape interpolation: the model
is adjusted to look as desired with two targets. Now a third target is added; it
interferes with the other two, so the animator must go back and adjust the previ-
ous two sliders. And so on for the fourth and subsequent sliders. Sophisticated
models (e.g. those on Disney’s Dinosaur) can have as many as 100 blend shapes,
so this is a lot of adjustment due to shape “fighting”.

Likewise, the authors of shape interpolation programs have described artists’
complaints relating to lack of shape independence – with highly correlated shapes
it is not clear which slider should be moved. Some shapes reinforce, others can-
cel, sometimes a small slider movement results in a large change, sometimes
not.

• Animation control is dictated by sculpting Each slider controls one key shape,
each key shape is controlled by one slider, as it has been for 15 years of facial
animation.

• Linear interpolation

Pose space deformation (PSD) algorithms address these problems.



Figure 1: PSD Facial poses selected according to psychological research rather than
traditional motion extremes. Model and figure by Nickson Fong.



Interpolation versus superposition

The problem of shapes “fighting” is because the shapes are simply added. PSD inter-
polates, so keyshapes do not interfere.

Modeling is decoupled from animation control

It is necessary to be able to control the influence of each keyshape, but the one-for-one
mapping is not the only way to do this.

• Non-control shapes. Suppose “excited” and “happy” are two distinct target
shapes, but in a direct crossfade the intermediate shape is not adequate and a
new model is required. With SI one would need to introduce a new slider for the
intermediate “half-excited-half-happy” model, and this simple crossfade then re-
quires manipulating three sliders. Arguably this is complexity caused by the
system rather than desired by the animator. With PSD, place the halfway shape
halfway between the key shapes and it will automatically be interpolated during
the crossfade.

• Higher order parameters. The decoupling of sculpting from animation control
makes it possible to consider other sorts of control. Example: A character is
sometimes possessed by the devil, sometimes not. Place the keyshapes in a
PSD space with one extra dimension (‘possessed’), then a performance can be
changed from possessed to not by just flipping a switch.

• Psychologically relevant poses. The decoupling of sculpting from animation
control makes it possible to design facial poses by criteria other than motion
extremes. Example: Psychologist J.A.Russel has studied human perception of
emotion and found that emotional similarity is mostly explained by a two-dimensional
space . This space may be the most appropriate one in which to interpolate emo-
tional expressions. See Fig. 1.

• Regularization of parameters. If two sculpted shapes are similar, having one
slider per shape does not reflect this, and thus the ‘slider movement may make
small or large changes’ problem. PSD allows similar shapes to be placed as
neighbors in a chosen control space. See the implementation section on regular-
ization for more details.

Smooth rather than linear interpolation

PSD allows smooth interpolation if desired, whereas with shape interpolation, in going
from shape A to B and then to C, an individual cv moves in a piecewise linear way –
there is a kink at B. Easing in/out of the transition does not change this fact.



Linear Algebra View of Shape Interpolation

Linear algebra gives another viewpoint on the character of motion resulting from shape
interpolation: Shape interpolation of n shapes each having m control vertices

S =
n∑
k

wkSk

can be written as a vector-matrix multiply with the keyshape vertices arranged in the
columns of a m × n matrix.

c1x

c1y

c1z

c2x

c2y

...

...
cnz


=



| | · · · |
| | · · · |
| | · · · |
| | · · · |

S1 S2 · · · Sn

| | · · · |
| | · · · |
| | · · · |
| | · · · |




w1

w2

...
wn



The range of this matrix is at most of dimension n, so the animation is restricted to this
subspace of dimension n << 3m reflecting the fact that individual cvs cannot move
independently. The ‘Bruton’ Dino model appears to have 60*52 + 4*21 + 4*18 + 4*21
+ 15*35 + 16*35 + 11*35 + 18*35 + 17*21 + 17*16 + 17*21 + 11*21 = 6677 cvs and
so can be represented in a 3 (x,y,z) * 2 (symmetry) * 6677 length vector. On the other
hand it appears that there are under a hundred key shapes used to animate this head.

The preceding vector interpretation is valid; the next analogy is only that (an analogy).
Consider the cv’s as “samples” representing the resolution of the model – so the Bruton
model has 18k samples. Also consider the number of samples needed to represent an
object in the subspace of possible movement: 100 or less. This ratio of 100/18k reflects
a movement deficiency - it indicates how much modeling resolution is not used in the
animated movement.

A similar vector space interpretation of PSD is more complex but indicates that the
PSD motion is richer than that produced by shape interpolation. A single coordinate of
a particular cv is deformed as

c =
∑

wkR(|~θ − ~θk|)

where ~θ is the vector of PSD parameters. The matrix R changes depending on ~θ, and
wk are different from one coordinate to the next, so the range is not a simple subspace
– each cv has some amount of independent movement.

Efficiency: PSD vs SSD*

ssd: v_final = sum w_k * T_k * v



e.g.
v_final[x] = w1 * (T1[0,0]*v[0] + T1[0,1]*v[1] + T1[0,2]*v2 + T1[0,3])

+ w2 * (T2[0,0]*v[0] + T1[0,1]*v[1] + T1[0,2]*v2 + T1[0,3])

very roughly = 3*J*4 multiply/adds, where J is the number
of bones/transforms that the vertex is weighted to, and 3 because x,y,z.

psd: v_psd = sum w_k table[ angle - angle_k ]
e.g.

v_psd[x] = w_1 * table[ (rx-rxp[1])ˆ2 + (ry-ryp[1])ˆ2 + rz-rzp[1])ˆ2 ]
+ w_2 * table[ (rx-rxp[2])ˆ2 + (ry-ryp[2])ˆ2 + rz-rzp[2])ˆ2 ]
+ w_3 * table[ (rx-rxp[3])ˆ2 + (ry-ryp[3])ˆ2 + rz-rzp[3])ˆ2 ]

rx,ry,rz is the current pose, assuming 3d case,
and rxp[k] is the x-rotation of the k’th example/correction

very roughly = 3*E*(D*something) multiplies,
where E is the number of example shapes, D is the number of dimensions,
and "something" more than 1, maybe less that 2, to take into account
that the sum of distancesˆ2 involves an extra subraction,
not just add-multiply as in the ssd case.

...psd is more expensive, but it does not seem hugely more expensive in terms of the
number of multiplies, maybe a factor of 2-5x depending on the number of dimensions
and poses?


