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Comment: it is more sensible to start with KL divergence, the more fundamental quan-
tity, and derive least squares as a special case. This note is for people who are familiar
with least squares but less so with entropy.

Start with least squares,
min
yk

∑
k

(yk − xk)
2 (1)

where xk are the given data and yk are the corresponding points estimated by the model.
This can be related to cross-entropy in two steps: 1) convert into a likelihood, 2) con-
vert to KL-divergence between the data and model probabilities. In the “conversion”
process there are several steps that transform through a log or exp, or by negating and
flipping max/min. These are monotonic transformation and do not alter the location of
the solution.

1. Least squares to likelihood

To convert into a likelihood, we need to maximize something rather than minimize.
Negate, and switch the min to a max:

max
yk

∑
k

−(yk − xk)
2

Note that the location of the maximum is the same as the location of the minimum in
(1), we have just flipped the quadratic bowl upside-down.

Next take the exponential of this, and recall the rule “the log of a product is equal to
the sum of the logs”.

= max
∏
k

exp(−(yk − xk)
2)

This has the form of a product of Gaussians. (Note, for simplicity this is ignoring both
the 2σ2 in the argument to exp in the Gaussian formula, and the normalizing constant
in front of the Gaussian. Including the normalizing constant results in an additional
regularizing term that prefers σ to be 1.) If the data has different error variances at
different points this could be generalized to

= max
∏
k

exp

(
− (yk − xk)

2

σ2
k

)

This has the form of a likelihood in the case where the errors are independent and
therefore factor as a product over the individual data points:

P (x|θ) =
∏
k

P (xk|θ)

1



where P (xk|θ) ∝ exp(−(yk − xk)
2/σ2).

2. Likelihood to KL divergence

Usually instead of maximizing the likelihood, the negative of the log likelihood is
minimized. This goes backwards a few steps.

max
∏
k

P (xk|θ) ⇒ min −
∑
k

logP (xk|θ)

(σk is dropped for simplicity).

Replace the sum with an average.

min − 1

N

∑
logP (xk|θ)

A tricky part (when going from likelihood to KL divergence rather than in the other
direction). Consider a toy dataset where the data has values xk = {1, 2, 2, 7, 4}. The
sum above is then

1

5
(logP (1|θ) + logP (2|θ) + logP (2|θ) + logP (7|θ) + logP (4|θ))

where (as a reminder) P (1|θ) is the likelihood of the value 1 under the model with
parameters θ. This can be re-written as a sum over the unique values of the data, rather
than over the data,

min −
∑
i

[
1

N

∑
k

δ(xk − xi)

]
logP (xi|θ)

Here xi indexes the unique values {1, 2, 7, 4}, skipping the repeated 2. The sum in
brackets is a loop over all the data, This is the empirical (data) probability distribution,
PD(x) = 1

N

∑
i δ(x − xk). The bracketed term gives 1/N for each non-repeated

datum, or 2/N for a data item that has one duplicate, etc.

Rewrite using PD(x)

min −
∑
i

PD(xi) logP (xi|θ)

This is now in “entropy land” – it is the cross entropy of (data,model).

The minimum is unchanged if we add any term that does not involve the model param-
eters θ. The term to add is the negative entropy of the probability of the data,

= min

[∑
i

PD(xi) log(PD(xi))

]
−

∑
i

PD(xi) logP (xi|θ)

= min
∑

PD(xi) log
PD(xi)

P (xi|θ)
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= min KL [PD(x)∥P (x|θ)]

To give a more conventional appearance, rewrite P (x|θ) ⇒ Pθ(x),

= min KL [PD(x)∥Pθ(x)]

I.e. the result is to minimize the KL diverergence between the data and model proba-
bilities.

The cross-entropy is −
∑

i PD(xi) logP (xi|θ). It appeared above by dropping the
negative data entropy term after noting that the latter does not affect the location of the
minimum.

Recapping, a general statement of model fitting is to minimize the KL diverergence
between the data and model probabilities. Cross-entropy appears in ignoring a term
that does not depend on the model parameters and thus is not used in the computation.
Least squares is obtained when the model assumes independent Gaussian-distributed
errors.

3


