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Abstract

Although it is well known that cross correlation can be

efficiently implemented in the transform domain, the

normalized form of cross correlation preferred for tem-

plate matching applications does not have a simple fre-

quency domain expression. Normalized cross correla-

tion is usually computed in the spatial domain for this

reason. This short paper shows that unnormalized cross

correlation can be efficiently normalized using precom-

puted tables containing the integral of the image and

image2 over the search window.

1 Template Matching by Cross

Correlation

Correlation is an important tool in image processing,

pattern recognition, and other fields. The correlation be-

tween two signals (cross correlation) is a standard ap-

proach to feature detection [1, 2] as well as a build-

ing block for more sophisticated recognition techniques

(e.g. [3]). Textbook presentations of correlation com-

monly mention the convolution theorem and the atten-

dant possibility of efficiently computing correlation in

the frequency domain via the fast Fourier transform. Un-

fortunately the normalized form of correlation (correla-

tion coefficient) preferred in many applications does not

have a correspondingly simple and efficient frequency

domain expression, and spatial domain implementation

is recommended instead (e.g. [2], p. 585; also see e.g.

[4] sections 13.2 and 14.5). This paper shows that the

unnormalized correlation can be efficiently normalized

using using precomputed tables of the integral of the sig-

nal and signal2, i.e., summed-area tables [5].

Template matching techniques [1] attempt to answer

some variation of the following question: Does the im-

age contain a specified view of some feature, and if so,

where? The use of cross correlation for template match-

ing is motivated by the distance measure (squared Eu-

clidean distance)

d2

f,t(u, v) =
∑

x,y

[f(x, y) − t(x − u, y − v)]2

(the sum is over x, y under the window containing the

feature positioned at u, v). In the expansion of d2

d2

f,t(u, v) =
∑

x,y

[f2(x, y) − 2f(x, y)t(x − u, y − v)

+ t2(x − u, y − v)]

the term
∑

t2(x − u, y − v) is constant. If the term
∑

f2(x, y) is approximately constant then the remain-

ing cross correlation term

c(u, v) =
∑

x,y

f(x, y)t(x − u, y − v)

is a measure of the similarity between the image and the

feature.

2 Normalized Cross Correlation

If the image energy
∑

f2(x, y) is not constant however,

feature matching by cross correlation can fail. For ex-

ample, the correlation between the template and an ex-

actly matching region in the image may be less than the

correlation between the template and a bright spot. An-

other drawback of cross correlation is that the range of

c(u, v) is dependent on both the size of the template and

the template and image amplitudes.

Variation in the image energy under the template can

be reduced by high-pass filtering the image before cross

correlation. In a transform domain implementation the

filtering can be conveniently added to the frequency do-

main processing, but selection of the cutoff frequency is

problematic – a low cutoff may leave significant image

energy variations, whereas a high cutoff may remove in-

formation useful to the match.

Normalized cross correlation overcomes these difficul-

ties by normalizing the image and template vectors to



unit length, yielding a cosine-like correlation coeffi-

cient

γ(u, v) =
∑

x,y[f(x, y) − f̄u,v][t(x − u, y − v) − t̄]
{

∑

x,y[f(x, y) − f̄u,v]2[t(x − u, y − v) − t̄]2
}0.5

(1)

where t̄ is the mean is the mean of the template and f̄u,v

is the mean of f(x, y) in the region under the template.

3 Computation

Consider the numerator in (1) and assume that we have

images f ′(x, y) ≡ f(x, y) − f̄u,v and t′(x, y) ≡
t(x, y) − t̄ in which the mean value has already been

removed:
num

γ (u, v) =
∑

x,y

f ′(x, y)t′(x − u, y − v) (2)

For a search window of size M2 and a template of size

N2 (2) requires approximately N2(M − N + 1)2 addi-

tions and N2(M − N + 1)2 multiplications.

Eq. (2) is a convolution of the image with the reversed

template t′(−x,−y) and can be computed by

F−1{F(f ′)F∗(t′)} (3)

where F is the Fourier transform. The complex con-

jugate accomplishes reversal of the template via the

Fourier transform property Ff∗(−x) = F ∗(ω).

Implementations of the fast Fourier transform (FFT) al-

gorithm generally require that f ′ and t′ be extended

with zeros to a common power of two. The complexity

of the transform computation (2) is then 12M2log2M

real multiplications and 12M2log2M real additions [6].

When M is much larger than N the complexity of the

direct ‘spatial’ computation (2) is approximately N2M2

multiplications/additions, and the direct method is faster

than the transform method. The transform method be-

comes relatively more efficient as N approaches M and

with larger M, N .

4 Normalized Cross Correlation in

the Transform Domain

Examining again the numerator of (1), we note that the

mean of the template can be precomputed, leaving

num

γ (u, v) =
∑

f(x, y)t′(x − u, y − v)

− f̄u,v

∑

t′(x − u, y − v)

Since t′ has zero mean and thus zero sum the term

f̄u,v

∑

t′(x − u, y − v) is also zero, so the numerator

of the normalized cross correlation can be computed us-

ing (3).

Examining the denominator of (1), the length of the tem-

plate vector can be precomputed in approximately 3N2

operations (small compared to the cost of the cross cor-

relation), and in fact the template can be pre-normalized

to length one.

The problematic quantities are those in the expression
∑

x,y[f(x, y) − f̄u,v]
2. The image mean and local en-

ergy must be computed at each u, v, i.e. at (M−N+1)2

locations, resulting in almost 3N2(M −N + 1)2 opera-

tions (counting add, subtract, multiply as one operation

each). This computation is more than is required for the

direct computation of (2) and it may considerably out-

weight the computation indicated by (3) when the trans-

form method is applicable. A more efficient means of

computing the image mean and energy under the tem-

plate is desired.

These quantities can be efficiently computed from

summed-area tables containing the integral (running

sum) of the image and image square over the search area,

i.e.,

s(u, v) = f(u, v)+s(u−1, v)+s(u, v−1)−s(u−1, v−1)

s2(u, v) = f2(u, v) + s2(u − 1, v)

+ s2(u, v − 1) − s2(u − 1, v − 1)

with s(u, v) = s2(u, v) = 0 when either u, v < 0. The

energy of the image under the template positioned at u, v

is then

ef(u, v) = s2(u + N − 1, v + N − 1)

− s2(u − 1, v + N − 1)

− s2(u + N − 1, v − 1)

+ s2(u − 1, v − 1)

and similarly for the image sum under the template. This

technique of computing a definite sum from a precom-

puted running sum was introduced in [5] to rapidly low-

pass filter texture images.

The problematic quantity
∑

x,y[f(x, y)−f̄u,v]
2 can now

be computed with very few operations since it expands

into an expression involving only the image sum and

sum squared under the template. The construction of the

tables requires approximately 3M2 operations, which is

less than the cost of computing the numerator by (3) and

considerably less than the 3N2(M − N + 1)2 required

to compute
∑

x,y[f(x, y) − f̄u,v]
2 at each u, v.



5 Application

The integration of synthetic and processed images into

special effects sequences often requires accurate track-

ing of sequence movement and features. The algorithm

described in this paper was used for this purpose in the

recent movie Forest Gump. The special effect sequences

in that movie included the replacement of various mov-

ing elements and the addition of a contemporary ac-

tor into historical film and video sequences. Manually

picked features from one frame of a sequence were au-

tomatically tracked over the remaining frames; this in-

formation was used as the basis for further processing.

The relative performance of feature tracking by the

transform domain algorithm is a two-dimensional func-

tion of the problem size (search window size) and the

ratio of the template size to search window size. Rela-

tive performance increases along the problem size axis,

with an additional ripple reflecting the relation between

the search window size and the bounding power of two

(Fig. 1). The property that the relative performance is

greater on larger problems is desirable. Table 1 illus-

trates the performance obtained in practice.

Note that while a small (e.g. 102) template size would

suffice in an ideal digital image, in practice larger fea-

ture sizes are more immune to imaging noise such as the

effects of film grain and motion blur. Due to the high

digital resolution required to represent video and film, a

small movement across frames may correspond to a dis-

tance of many pixels. Also the selected features are of

course constrained to the available features in the image;

distinct “features” are not always available at preferred

scales and locations. As a result of these considerations

search windows of 502 and larger are often employed.

6 Conclusion

The transform domain normalized cross correlation al-

gorithm is well suited to special effects feature track-

ing. Manual tracking of multiple features over several

minutes of frames was not feasible, and small errors in

manual tracking would have prevented the seamless in-

tegration of new image elements.

The approach presented here should also be compared to

spatial multigrid convolution approaches. We note that

while these approaches would work for some examples,

we have encountered other cases in which the available

features (e.g. a configuration of small spots on a wall

or floor) have very little low-frequency content and the

low-frequency search would not be robust.
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Figure 1: Measured relative performance of transform

domain versus spatial domain normalized cross correla-

tion as a function of the search window size (depth axis)

and the ratio of the template size to search window size.

search window(s) length direct transform

168 × 86 896 frames 15 hours 1.7 hours

115 × 200, 150× 150 490 frames 14.3 hours 57 minutes

Table 1. Two tracking sequences from Forest Gump

were re-timed using both transform and direct meth-

ods using identical templates and search windows on an

≈ 60 SPECmark workstation. These times include a 162

sub-pixel search at the location of the best whole-pixel

match. The sub-pixel search was computed using Eq.

(1) (direct approach) in all cases.


